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Introduction

Our research focuses on Edge Machine Learning (EML) within 5G/6G networks.

= New generation mobile networks support diverse applications, each with
specific Key Performance Indicators (KPls).

= Many of them are based on Artificial Intelligence and Machine Learning.

= EML allows the deployment of ML/AI services with low latency and low
energetic consumption enabling the User Equipments to offload the data
towards the network edge.

Figure 1. Schematic representation of a new generation mobile network, with edge and cloud
networks. Credits: https:/www.alibabacloud.com/fr/knowledge/what-is-edge-computing.

Goal-Oriented communications [1] represents a novel communication paradigm
that act as a key-enabler for Edge Machine Learning tasks.

Specifically, GOCs have the following appealing features:

= They focus on transmitting only essential information for specific tasks.

= They allows to save as much transmission resoures as possible while
oguaranteeing a prescribed level of learning performance.

Goal-Oriented Communications can be formalized throgh the Information Bottle-
neck (IB) principle [2], a theoretical framework based on rate/distortion theory
areuments which aims to find a compact representation Z of a signal X which is as
much informative as possible with respect to the outcome of a specific inference
task Y.

Main Scientific Contributions

Scientific Results

The works |3, 4, 5, 6] investigate optimal resource allocations strategies for edge-
assisted GOCs and they highlighted the benefit of GOCs in reaching the best
trade-offs between energy, latency and learning performance considering both
single/multi carrier transmission schemes and also taking into account noisy com-
munications.

Scientific Results (contd.)

In [8] we developed an optimal resource allocation strategy for goal-oriented deep
neural network splitting. The main contributions are

= Analysis of the accuracy degradation in different SNR regimes as a function of
the splitting-point.
= Dynamic optimization of the computational and transmission resources as well

as the splitting point selection taking into account the accuracy degradation
due to the noise effect.
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Our main scientific contribution are related to the development of resource alloca-
fion strategies to support edge-assisted Goal-Oriented communications focusing
on the best trade-off among latency, energy and learning performance.

= Optimal resource allocation for digital goal-oriented compression framework
based on auto-encoders and JPEG encoding. |3, 4]

= Extension to multi-carrier transmission and digital transmission affected by a
non null bit-error-rate |5, 6].

= Development of the Opportunistic Information Bottleneck, a Goal-Oriented
compression scheme based on the optimal solution of the Gaussian
Information Bottleneck [7].

= Optimal resource allocation for Goal-Oriented DNN splitting [8].
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Figure 2. Energy/Accuracy trade-off comparisons considering an Auto-Encoder based GOC

scheme (solid) and a compression scheme based on downsampling with anti-aliasing pre-filtering
(dashed).

Our Opportunistic Information Bottleneck framework, presented in | /], exploits
the closed-form solution of the Gaussian Information Bottleneck [?2] to solve an
opportunistic regression sub-task between a Gaussian Transformation h() of the
input data and the output of the first linear layer Lg of a Deep-Neural network
used to solve a general inference task (e.g., image classification). This allows to
deploy a theoretical principled and low-complexity GOC scheme with a better
compression/accuracy trade-offs with respect to the competitors.
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Figure 3. Comparison of the proposed opportunistic Information Bottleneck with Principal
Component Analysis and a feature extraction algorithm based on Mutual Information
Maximization.

Figure 4. (a) shows the accuracy degradation as a function of the splitting point for different
SNRs. (b) shows the benefits of the proposed dynamic SP selection strategy with respect to the
competitors.

Ongoing Research and future work

= Development of resource allocation strategies to ensure average and strict
reliability guarantees using Adaptive Conformal Prediction [10].

= Optimal Resource allocation for Edge-Assisted Opportunistic Information
Bottleneck.

= [nvestigation of EML and GOCs In Federated Learning scenarios.
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