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PROPOSTA DI RIAPPLICAZIONE ALL'ESERCIZIO 2018 DELLE DISPONIBILITA' LIBERE RISULTANTI AL

DIPARTIMENTO
DI INGEGNERIA

F1M2Re7

Ailegato n. 3

Voce COAN

Denominarione

Totate

CA.01.10.01.01.01

Costi o impianto, di ampliamento & di sviluppo

CAQ01.10.01.02.01

Diritti i brevette

CA01.10.01.02.02

Adtri diviti di utilizzazione delle opare di ingegno

CA.01.10.01.03.01

Concessioni marchi e dirti similan

CA.01.10.01.03.02

Licenze d'uso

CA01.10.01.04.1

Immobitizzazioat immateriali in corse & acconti

CA.D1.10.01.65.09

Software

CA.D1.10.01.05.02

Altre immobilizzazioni immateriali

CA.01.10.01.05.03

Intervanti ad apere su bani di terzi

£A.01.10.02.01.0%

Terrent

CAD1.10.02.01.02

Interventi edilizi su terreni

CA01.10.02.01.03

Fabbricati

CA.01.10.062.01.04

interventi editizi su Fabbricati

CA01,10.02.01.056

Manutenzione siraordinaria su fabbricatt

CA01.10.02.02.01

Implantt generici

CA.01.10.02,02.02

Manuignzione stracrdinaria impiant generici

CA01.10.02.02.03

Ignpianti per la ricerca sciantifica

CA01.10.02.02.04

Manuienzione straordinaria impianti per Ia ncerea scientifics

CA.01.10,02.62.05

Altrezzature

CAD1.10.02.03.01

Attrezzatura per [a ricerca scientifica

CA,01.10.02.04.01

Beni di valore culturale, storico, archealogico ed aristico

CA01.10.02.04.02

Intervenli di restauro su beni di valore culturale, siorico, archeologico ed artistico

CA01.10.02.04.03

Materiale bibliografico

CA.01.10.02.04.04

Qpere attistiche

CA.01.10.02.04.05

Coltezioni scientifiche

CA.01.10.02.04.06

Altro materiale bibliografice

CA.01.10.02.05.01

obili & Arredi

CA.01.10.02.06.01

Cosli e acconti per acquisizione di ferreni

CA.01.10.02.06.02

Casti ¢ acconti per intervant edilizi su terrent

CA.01.10.02.06.03

Costi e acconti per interventi edilizi su fabbricati

CA.01.10.02.06.04

Costi e acconli par manutenzione siraordinaria sy fabbricatt

CA.01.10,02.08.05

Costi @ acconti per acquisizione di fabbricati

CA01.10.02.05.06

Cosli e acconti per acquisizione di impianti genarici

CA.M.10.02.08.07

Costi e acconti per acquisizione di impiant per fa ricerca scientlfica

CA.01.10.02.06.08

Casti & acconti per altre immobilizzaziont materiali

CA.0.10.02.07.01

Apparecchisture di natura informatica
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PROPOSTA DI RIAPPLICAZIONE ALL'ESERCIZIC 2018 DELLE DISPONIBILITA' LIBERE RISULTANT! AL

DIPARTIMENTO
DI INGEGNERIA

3212017

Allegato n. 3

Voce COAN

Denominazione

Totale

CAG1.10.02.07.02

Autoveiture di rappresentanza e di servizio

CA01.10.02.07.03

Autocarrt, merzl agrical e attri mezzi di trasparte

CA01.10.02.07.04

Altri beni mobili

CA01.10.03.01.01

Fartecipazioni in imprese ad enli controflati

CA.D1.10.03.01.02

Partacipazioni in altre imprese ad enti

CA01.10.03.01.03

Altsi itoli

CA.01.10.03.01.04

Partecipazione in imprese ad enil collegati

CA.01.11.01.01.01

F.do di riserva vincolato ad investimenti

CAD01.12,01.01.09

Trasferimenti interni budget investimenti

CAD4A08.M.01.1

Rirmanenze iniziali materiale di consumo

CA.04.068.01.62.01

Rimanenze iniziall prodott in sorso di favorazione

CA.04.06.01.03.01

Rimanenze iniziali prodotii finiti

CA.04.06.01.04.01

Rimanenze iniziali lavori in corso su ordinazione

CAQ4.06,01.05.01

Rimanenze iniziali rrerci

CA04.08.01.01.01

Coslo per competenze fisse del personale docente 2 tempo indeterminato

CA.04.08.01.01.02

Caosto per competenze fisse det personale docente a fempo delerminate

CA04.08.01.01.03

Cosie per supplenze e sffidamenti a personale docente a tempo indeterminalo

CA.04.08.01.01.04

Costo per suppienze e affidamenti a personale docente a tempo determinato

CA.04.08.01.01.05

Indenrillz' di missiane, rimborsi spese viaggi e iscrizione a convegni def personale docente &
ricercatori

CA.04.08.01.01.06

Costo per competenze fisse det personaie ricercatore a tempo indeterminate

CA.04.08.01.01.07

Coslo per supplenze & affidamentt a personale ricercatore a tempo indeterminato

CA.04.68.01.01.08

Costo per competenze fisse del personale ricercatore a tempo determinate

CA.04,08.01.01.00

Costo per supplenze e affidementi a personale ricercafore a tempe delerminate

CA.04.08.01.01.10

Costo delle competenze accessorie dal personale docents e ricercatore

CA.04.08.01.01.11

Indennita di nschio del personale docents e dei ricercatori

CAD4.08.01.01.12

Indennita di rischio radiclogica del personale docente e dei ricercalari- non convenzionaln

CAL4.08.01.01.13

Punii organico per personale docenie & ricercatore

CA04.08.01.01.14

Fendo di Atenen per Ja premialita

CA.04.08.01.02.01

Assegni di rcerca

CA.04.08.01.02.02

Indennita’ di missione, rimborsi spese viaggl per gli assegni di ricerca

CA.04.08.01.03.01

Cosio del personale dogenies a contratto

CA.04.08.01.04.0%

Costo per i collaboratori ed esperti linguistici a tempo indeterminato

CA.04.08.01.04,02

Competenze fisse a collaborator ed esperti linguistict di madre lingua a tempo determinato
(i3

CA04.08.01.04.03

Costo per supplenze e affidamenti a collaberatori ed esperti linguistici 2 tempo
indelarminato

CA.04.08.01.04.04

Costo per supplenze e affidamenti a collaboratori ed esperii linguistici a tempe determinale

CA04.0801.04.08

indennita’ di missione, rimborsi spese viaggi per collaboratori ed esperti linguistici 2 lempo

indeterminajo
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Allegato n. 3

Voce COAN

Dengminaziong

Totale

CA.04.08.01.04.08

tndennita’ di missione, rimborst spese viaggi per collaboratori ed esperti Enguistict a tempo
determinato

CA.D4.08.01.04.07

Costi di formazione esperti finguistici

CA.04.08.01.05.0%

Costo per corpatenze fisse per altro personale dedicato afia ricerca ed alia didattica

CA.04.08.01.05.02

Competenze accessorie per altro personale dedicato aila ricerca ed alls didatticz

CA.04.08.01.06.01

Compensi a personaie docente convenzionato ssn (per altivith assistenziale)

CA.04.08.01.06.02

Compensi a personale ricercaiore a tempo indeterminato convenzicnalo ssn (per attivia

assistenziale)

CA04.08.01.05.03

Compensi a personale ricercatore a tempo determinato  convenzionato ssn (per aftivitz
assistenziale)

CA.04.08.01.07.01

Cosio della compelenze per personale docente e ricercatore su altivita’ conto tarzi

CAD4.08.02.01.04

Costo dei dirigenti a iempo indeterminato

CA.04.08.02.02.01

Costo dei direttore generale e dei dirigenti a2 tempe determinato

CA.04.08.02.03.01 Costo del personale lecnico-amministrativo 2 termpo indsterminato
CA04.08.02.04.01 Costo del personale tesnico-amminisirative 2 tempo daeterminato
CA.04,08.02.05.01 Compelenze accessorie de! Direttore Generale e del personale dirigente
CA.04.08.02.05.02 Compelenze accessorie al perscnale ERP

CA.04.08.02.05.03 Competenze accessorie al personale tecnica-amministrativo

CA.04.08.02.05.04

Indennitd centralinisti non vedenti

CA.04.08.02.05.05

Indennita di rischio radiologico del personale tecnico-amminisirativo a tempo indeterminato -

[:on convenzionato

CA.04.08.02.06.01

indennita’ di missione, rimborsi spese viaggi del personale dirigente e tecnico-
arnrministrative

CA.04.08.02.08.02 Buoni paste per il personale tecnico-amministrativo

CA 04 08.02.06.03 Formazione del personale dirigente e tecnico-amministrative

CA.04.08.02.06.04 Punti prganico per personaie dirigente, tecnico-amminisirativo e cel

CA.04.08.02.07 .01 Compesi attivita conte terzi personale tecnico amministrativo

CA.04.08.02.08.01 Compe_n_si a personalfe tecnico-amminisirative a tempo indeterminato convenzionato ssn
{pey_attivita assistenzialg)

CA.04.08.02.08.02 Eﬁpensi g pergona;le lecnico-amminisirativo a tempo detarminato convenzionato ssn {per
aitivila gssisienziale

CA.04.08.02.08.01 Compenso a personale tecnico amministrative ai sensi def Codice dei condralti

CAD4.05.01.01.01

Cosli per borse di studio per scuole di specializzazione mediche a aorma ue

CA.04.09.01.01.02

Costl per borse di sludio per scudls di spacializzazions

CA04.08.01.04.02

Costi per borse di studio per detlorsto di ricerca

CA.04.08.01.01.04

Borse di studio per post dottorate

CA.04.09.01.01.05

Costi per altre borse

CA.04.09.01.01.06

indennita’ di missione, rimborsi spese viaggi per borse di studio per scucle di
spacializzazione mediche 2 norma us

CA.04.09.01.01.07

tndennita’ of missione, rimborsi spese viaggi per borse di studio per scuole di

ial

CA.04.08.01.01.08

Indennita’ di missions, rimborsi spese viaggi per borse di studio per post dottorato

CA 04.09.01.01.09

Indennita’ di misstone, imborsi spese viaggli per altre borse

CA.04.08.01.01.10

Indennita’ di missione, rimborsi spese viaggt per dottorato di ricerca

CA.04.05.01.01.11

Borse di coliaborazione studenti, attivita' a tempo parziale art. 11 D.Lgs 29/03/2012 n° 68

Pagina 3 di 10



DIPARTIMENTO
Dl INGEGNERIA

314212017

Allegato n. 3
PROPOSTA DI RIAPPLICAZIONE ALL'ESERCIZIO 2018 DELLE DISPONIBILITA' LIBERE RISULTANTL AL

Voce COAN

Denominazione

Totale

CA.04.05.01.02.0%

Programmi di mobilita’ e scambi culfurali studenit

CA.04.09.01.02.02

Iniziative ed attivita' culturali gestite dagli student

CA04.08.01.02.03

Interventi a favore degli studendi diversamente abifi

CA04,09.01.02.04

Assegni per lincentivazione deilatiivita’ di wtorato

CA.04.09.01.02.08

Aléri interventi a favore degli studentt

CA.D4.09.01.02.08

Altri premi

CA.04.09.01.03.01

Convegni e seminari

CA.D4.09.01.03.02

Ospitalita’ visiting professor, esperdi e relatar! convegri

€A.04.09.01.03.02

Compensi & sogglorno a visiting professor, esperii e refatori convegni

CA.04.09.02.01.01

Borse di collaborazione studenti, attivita’ a tempo parziale art. 11 D.Lgs 28/03/2012 n® 68
(O3 pon LEizzare)

CA04.09.03.01.01

Costi per 1a fcerca e Tatlvita editoriate

CA.34,00.04.01.01

Trasferimenti 2 partner di progetii coordinati

CA04.00.05.01.01

Materiale di consumao per laborafori

CA.04,02.08.01.01

Rimanenze iniziali materiale di consumo per faboratori

CAD4.08.06.02.01

Rimanenze finali materale di consumo per laboratori

CA04.09.67.01.01

Rivisie e giornali

CA.04.08.07.01.02

Libri e altro meteriale bibliografico nen costituenti immobilizzazioni

CA.04.09.08.01.01

Utenze 2 canonl per enargia elaftrica

CA.04.09.08.02.01 Utenze e canoni per telefonia fissa
CA.04.09.08.02.02 Utenze e canoni per teleforia mobile
CA04.00.08,.02.03 Utenze e canoni per reli di rasmissiong
CA.04.08.08.03.01 {Henze e canoni per acqua

CA.0409.08.02.02 \tenze e canoni per gas

CA.04.09.08.03.03 Riscaldamenio e condizionamento
CA.04.00.08.03.04 Alfre ulenze & canoni

CA.04.00.08.04.01 Pufizia

CA.04.08.08.04.02 Smaltimento rifili nocivi 2 907,95
CA.04.09.08.04,03 Traslochi e facchinaggio

CA.04.09.08.04.04 Vigilanza e altri servizi ausiliari
CA.04.09.08.05.01 Manutenzione ordinaria e riparaziont di immobili

CA.04.09.08.05.02

Manutenzione ordinaria e riparazioni di impiandi

CA.04.09.08.05.03 Manulenzione ordinaria & riparazioni di apparecchiziure

CA.04.02.08.05.04 Manulenzione ordinaria & riparazioni di autovetiure di rappresentanza e di senvizio
CA.04.08.08.05.08 Menuenzione ordinasia e riparagioni di aufocard, mezzi agricoll & altri mezzi di trasporto
CA.04.08.08.05.06 Mantienzione ordinaria e riparazioni mobil e arred

CA.04.05.08.05.07 Adtre spese di manutenzione ordinaria e riparazioni
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Allegato n. 3
PROPOSTA D! RIAPPLICAZIONE ALL'ESERCIZIO 2018 DELLE DISPONIBILITA' LIBERE RISULTANTI AL
322017
Voce COAN Denominazione Totate
CA.04.09.08.06.01 Rappresentariza
CA.04.09.08.06.02 Organizzazione manifestazioni e convegni
CA.04.08.08.06.03 Spese postah
CA.04.09.08.06.04 Assicurazioni
CA.04.09.08.06.05 Spese per le pubblicazioni dell'ateneo
CA.04,08.08.06.06 Spesa corrente per bravetti
CA.04.09.08.06.07 Alfre spese per servizi
CA.04.08.08.06.08 Cosii annuali per pubblicits’
CA.4.09.08.06.08 Spese per pubblicita’ degh atli
CA.04,00.08.08.10 Spese per lavorazioni agricale effetiuate da terzi
CA.04.05.08.05,11 Spese per commissioni ed intermediazioni bancarie
CA.04.00.08.07.01 Consulenze tecnice-scieniifiche
CA.D4.09.08.07.02 Consulenze tecnico-amminisirative
CA.04.09.08.07.03 Spese per i (patrocinio legale)
CA.04.08.0807.04 Spese notarik
GCA.04.02.08.08.01 Prestazioni di lavoro autonoma
CA.04.08.08.08.01 Prestaziont di servizi techicofamministrativi da enti {erzd
CA04.09.08.00.02 Alire prestazioni e sernvizi da {erzi
CA.04.09.08.10.01 Collaborazioni coordinate e continuative
CA.04.02.08 11.01 Costi per fornitura di lavoro inferinale
CA.04,09.08.01.01 Carburanti, combustibili e lubrificanti per autovetiure
CA.04.09.08.01.02 Carburanti, combustibili e lubrificanti per autocarri, mezz! agricoli e altri mezzi df trasporta
CA.04.08.09.01.03 Cancelleria & aliro matariale di consuma
CA.04.08.08.01.04 Libretti & diplomi
CA04.05.09.01.05 Vestiaria
CA.04.08.09.01 06 Materiale per ricorrenze lettorali
©A.04.09.09.01.07 Altrl materiali
CA.04.02.08.01.08 Combustitili per riscaidements
CA.04.00.09.62.01 Acquisto beni strumenali
CA.04.08.00.02.02 Acquisto software per pc
CA (4.08.08.03.01 Sconit e abbuoni passivi
CA.04.00.09.03.02 Sconti ablbuani e premi su acquisti
CA (4.09.16.01.01 Rimanenze iniziali di materiali
CA.04.09.11.01.04 Leasing operative ed altre forme di locazions di beni mobilt
CA.04.09.11.01.02 Leasing operativo ed altre forme di tocezione di autovelture di rappresentanza e di seivizio
CA.04.09.11.01.03 :;eaisil;l.g;peratim ed alire forme di locazione di autocarri, mezzi agricali e altsi mezzi di y:
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Allegato n. 3

PROPOSTA DI RIAPPLICAZIONE ALL'ESERCIZIO 2018 DELLE DISPONIBILITA’ LIBERE RISULTANTI AL

322017

Voce COAN

lDenominazione

Totale

CA.04.08.14.01.04

Noleggio fax 2 fotocopialric

CA04.02.11.01.05

Altri noleggi

CA.04.08.11.02.01

Fitti passivi per locazione di edifici

CA.04.02.11.02.02

Aliri fiiti passivi

CA04.08.11.03.01

Licanze software

CA.04.08.12.01.01

Missioni e rimborsi spese Irasferta organi istituzionali

CA.04.09.12.01.02

Gehonifindennita’ ai membri degli organi Istituzionali di governg e controilo

CA.04.09.12.01.03

indenni{a’ di carica

CA.04.08.12.01.04

Geltonifindennita’ ai mambri degli organi istiluzionali che nen siano di amminisirazions &
controlio

CA.04.08.12.01.05

Getonifindennita’ ai membri del gollegio dei revisod

CA.04.02.12.01.06

Getlonifindennita’ ai membri del nucles di valutazions

CA04.0812.01.07

Garante di Ateneo

CA.04.08.12.02.01

Quote associative

CA04.08.12.02.02

Compensi per commissiont di concerse det personale interno ed esterno

CA.04.08.12.02.03

Adlri costi per aftivita® istituzionali

CA.04.058.12.02.04

Costi per attivita sportive L. 20477

CA.04.08.12.02.05

Cus - attivita' sportiva & gestione impiant sporivi

CA.04,09.12.02.08 Arrctondamenti negativi
CAD4.00.12.02.07 Visite medice-fiscall
CA.04.09.12.02.08 Accertamenti sanitart
CA.04.0912.02.09 Eque indennizzo

CA.04.08.12.02.10

Prowidenze a favore del personale

CAD4.0812.02 11

Circolo San Marting - attivita sociali del personale

CA.04.08.1202.12

Prestazioni INAIL - gestiong per conto

CA.D4.08.12.02.13

Spese condominiali

CA04100101.01 -

HQUOTE DI MMORTAMENTO COSTI DI IMPIANTO, Ti AMPL!AMENTO E 2

SVILUPPD

CAD4.100101.02 -

JQUGTE Dt AMMORTAMENTO CIRITTI DI BREVETTO E DlR!TTi [ UTlLIZZAZiONE '_

g;;g g_g gag D! [Q{QEGNO

CA.04.90.01.01.03 1

CA.04,10.01.01.04

CA04.100201.01 . {¢

CA.04.10.0201.03 [Q

CA.04.10,02.07.08

- Jauore DI'AMMQRWENTQ TR .;MMO.BM.Z.ZA..Z!.QN.'.wéﬁiﬁ'u g

CADA10.0301.01

*|SVALUTAZIONE COST O IMPIANTO, Di AMPLIAMENTO E DI SVILUPPO

Pagina & di 10
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Allegato n. 3

Voce COAN

Denominazione

Totale

T SVALUTAZIO
DI INGEGNG

OAD4.100501.08 -

. {MUSEALL -

CAG4.10.0301:08

SVALUTAZIONE MOBILI E ARREDI

CA04.10.03.01.10 "~ -

SVALUTAZIONE -ALTQE IMMOBILIZZAZION MATERIALL 70

CA 04 ?00401 01

: Perdﬁa su credll: compresa nelrattm ccrcoiante 2 nel%e disponlb}lda hqmde '

CA.04.1 1,01.01 .01

) Quete di accamanamanto aI for:do svaluiazume areditl

CA.04.14.01.01.02

PERSONALE !\LEGLf ESERCIZ FUTUR]

C|GUOTE D] AGCANTONAMENTO Al FONDI ARRETRATI DA CDRR!SPONDERE Al

CAD4.11.010301 -

the d; accamonamento al fando per cause g controvers&e tn COIs0

CA04.11.01.0401

Quicle 4 accantonarmenio 3 fondi per at rischi eonied .

CA04.110108.01 .

Quota di esercizio per ali accanionamenti. -

CA.04.11.01.0601

[ Acosmtonamento per fonh f csscena

CA.04.11.01.06.02

{Accantonamento per fondi tr personate

CA.04.12.01. M.

TRASFERIMENTI INTERNI CORRENT}

CAD4,12.01.01.02

TRASFERIMENT! INTERNI PER INVESTIMENT]

CA04.12.01.01.03

TRASFERIMENT! INTERNI SU ATTIVITA' CONTO TERZI

CA.04,12.01.01.04

TRASFERIMENTI INTERN PER RESTITUZION! E RIMBORS!

CAQ412.0%01.05

ALTRI TRASFERIMENT! INTERN}

CA.D412.01.01.06

TRASFERIMENTI VARI

CA04.12.01.02.0%

Versamenti alte Stalo per riduzioni di spesa

CA.04,12.01.03.01

Tassa di rimozione rifiuli solidi urbani

CA.D4.12.01.03.02

Imposte sul registro

CA04.12.01.03.03

Valori bollat

CA.04.12.01.03.04

Altri tributi

CAL4.12.01.03.05

tva indeirabile

CA.04.12.01.03.08

Imposte sut patfimonio

CA04.12.01.03.07

Tribedi su (asciti @ donazioni

CA.04.13.02.01.01

Onert finanziari

CA.04.13.02.02.0%

inleressi passivi

CA.0413.03.01.0%

Perdife su cambi

CA.D4.14.02.01.01

Svalutazione titoli & partecipazion

CA.04.15.02.01.01

Cneri straordinari per #l personale
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LIPARTIMENTQ
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Allegato n. 3
PROPOSTA DI RIAPPLICAZIONE ALLESERCIZIO 2018 DELLE DISPONIBILITA' LIBERE RISULTANTI AL
3212017
Yoce COAN Denominazione Totale
CA04.15.0202.01 Rimborsi tasse e contribuli agh studanii
CA.0416.02.03.01 Oneri straordinari per recuperi & rimborsi
£A.04.15,02.04.01 Altri oneri straordinati 44,192 57
CA.04.15.02.05.01 Imposte relative ad esercizi precedenti
CA.04.16.01.01.01 Imposte sul reddite
CA.04 17.01.01.01 Vaoe per varazione tecnica
CA07.70.01.01.01 dclf: t:perdaiiir\fi prcj;er:i - guota di cqnpetenza per finanziamenti competitivi da miur - progetti
grea disifevants inferesse nezionale
Costi operativi progetti - quota di competenza per finanziamenti competitivi da miur - fondo
CA87.70.01.01.02 per gli invesiimenti dells ricerca di base ffirb)
CAD7.70.01.01.03 Costi operativi progetti - quota di competenza per aitri finanziamenti competitivi da miur
CA.07.76.01.02.01 Sc:stf op:erativ? pr?fgi;eﬂi - quota di compeatenza per finanziamenti competilivi da altri minister
jer ficerca scientifica
CA07.70.01.02.02 C_osﬁ f:peragvi_ progeﬂi - gunta di c‘om;');etenza per finanziamenti competitivi da stato {organi
divarsi da ministeri per ricerca scientifica
CAL07.70.01.02 03 ?o?ti c_:peraliv_i progetii - quota di competenza per finanziamenti competiivi per ricerca da
CA07.76.01.02.04 S;smt_iﬂgﬂefaﬁ\d progetti - quota di competenza per finanziamenti competitivi per riverce da
CA.07.70.01.02.05 C_os!i operaﬁx;j progeli - quota di competenza per finanziamenti compelitivi per ricerca da
CAN7 70.04.02.06 GC;?; ;pefativi progelti - quola di competenza per finanziamenti compelifivi per ricerca da
CA.07 70.01.02.07 Costi oPeFativi progr.ftti - guota di competenza per finanziamenli compelitivi per ricesca da
carmerg di commeirgio
Costi operativi progeiti - quota di competenza per finanziamenti competitivi per ricercada
CA07.70.01.02.08 \ . :
Costi operstivi progetti - quota di competenza per finanziamenti competitivi per ricerca da
CA.07.70.01.02.08 alire amministrazioni pubbtiche
CA.07.70.01.03.01 Costi operativi progelli - guota di competenze per finanziamenti compelitivi da cnr
CA.07.70.01.03.02 Coﬁi_u;?eraﬁvi grog;lgéllt;?ta di compelenza per finanziamenti competitivi per ricerca da
jentidi ricerca diversi dal
CAD7.70.01.04.01 DCosti cp:ra:‘lviproge!ti - quota di compelenza per finanziamenti campelitivi per ficerca da
arte dellunione guropes
CA 07.70.01.04.02 Costi c.peratiw: prc?g;etﬂ - qu.ota cfi competenza per finanziamenti competitivi per ricerca da
parte di organismi internazionalt
CA.07.70.01.05.01 Costi operativi progetti - altivite’ cterzi e cassione di risuliali di ricerca
CA.07.70.01.06.01 Caosti operativi progetli - finanziamenii non competitivi per Iz ricerca 123.70
CA.07.70.01.07.01 Cosii operativi progetti - Centri Autonomi di Gestione con Autonomia Negozile
CA.07.70.01.08.01 Costi operativi progetti per attivita di formazione
CA.08.80.01.01.01 Coslhi d_i igvgstimen%o progehi: guota di coqapetenza per finanziamenti competitivi da miur -
progeti di ricerca di rilevante inferesse nazionale
CA.08.80.01.01.02 Costi di inw-:’s‘!imenFo prqgeiti - quoﬁa i F,ompetenza per finanziamenti competilivi da miur -
fondo per ali investimenti della ricerca di base (firb)
CA.08.80.01.01.03 SE::i di invagtimento progetli - quota di compaienza per altri finanziamentt compelitivi da
CA.08.80.01.02 01 Cc_zsfti di .inwast'imento p_roggni - quota di competenza per finanziamentt competitivi da altri
ministeri per ricerca scientifica
CA.08.80.01.02.02 Costi q% i‘rwesﬁimento ?roggﬂi - qyota di cqmp_eienza per finanziamenti competitivi da stato
{or ricerca soientifica
CA.08.80.01.02.03 {I:osti di invest'imn'anm prqgetti - quota di competenza per finanziamenli compelitivi per
ricerca da rEqioni e pravince aujgngg_‘]g
CA.08.80.01.02.04 ti:csti di imrestimento progethi - quota di competenza per finanziamenli compelitivi per
CA08.80.01.02.05 (?osii i inve:stlmento prqgetti - quota di competenza per finanziamentt competitivi per
ricerca da ciltd metrppolilang
CA.08.80.04.02.06 Costidi investimgn!c progeiti - quota di competenza per finanziamenti competitivi per
ricerca da comuni
CA.08.80.01.02.07 thi di inves!imentc_: progedti ~_quola di competenza per finanziament] competitivi per , ,
Liverca da camere di commengio
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Voce COAN

Cenominazione

Totale

CA.08.80.61.02.08

Cosii di investimento progeiil - guota di competenza per finanziamenti competitivi per
ricerca da altre universitg

CA08.80.01.02,08%

Costi di investimento progetti - quota df competenza per finanziamenti competitivi per

ricerca da altre amministrazioni pubbliche

CA.08.80.01.03.01

Costi di investimento progetti - quota di competenza per finanziamenti competitivi da cnr

Costi di investimento progetti - quota di competenza per finanziamentt competitivi per

CA.08.80.01.03.02 - A -
rigerga da enii di rieerca diversi dal enr
CA.D8.50.01.04.01 ;::::a di investimento p_roget:: - quola di competenza per finanziarmenll competitivi per
erca da parle deilunions euronsa

CA.08.80.01.04.02

Casti di investimento progetti - guota di competenza per finanziamenti competitivi per
jcer i graanismi inernazionali

CA.08.80.01.05.01

Cosii di investimento progetti - altivila' in conto lerzi e cessione di risultali di ricerca

CA.08.80.01.06.01

Cosii di investiments progetti - finanziamenti non competitivi per la ricerca

CA.08.80.01.07 (1

Casti di investimenio progetti - Ceniri Autonomi i Gestione con Autonomia Negoziale

CA02.80.01.01.01

Mokifita e scambi culturali docenti - Budget economico

CA.09.9001.01.02

Rappori Internazionali, scambi cultural - Budget economico

CA.08.50.01.01.03

Comunicazione di Alenso - Budget economico

CADS.90.01.01.04

Acquisto, manutenzione, noleggio, esercizic veicoli - Budget economico

CA.08.90.01.01.05

Spese inerenti I'orientamento universitario - Budget economico

CA.09.90.01.01.06

Progetli i3 Missione - Budget econaomico

CA.09.90.01.01 .07

Spese funzionamenio Senvzio Prevenzione e Protézione - Budget economico

27.783,07

CA.08.96.01.01.08

Funzionamento Strulture Didattiche finanziate da Esterni - Budget economice

CA.02.90.01.01.08

Ricerca di base - Budgs! econamico

CA09.90.01.01.10

Funzicnamente sirutture didaltiche - Budget economico

£A.09.80.01.01.%%

Costi operativi s economie progedti - Budget economico

CA09.50.01.01.12

Cosli operativi allri progetti Amministrazione centrale - Budget economice

CA.09.90.01.01.13

{nformatizzazione Servizi - Budget economico

CA.09900101.14

Gestlione e sviluppe Rele di Ateneo - Budget economico

CA 101601010

Costruzione, ristrulurazione e restauro fabbricati

CA.10.10.01.01.02

Costruziong impiandi

CA10.10.01.01.03

Ricostruzione e trasformagione fabbricati

CA.10,10.01.01.04

Ricostruzione e trasformazione impianti

CA.10.10.01.01.05

Manutenzione stracrdinaria immabili

CA.10.10.01.01.06

Manutenzione straordinaria impianti

CA1010.01.01.07

Spese in applicazions 0.1 626/84

CA.10.10.01.01.08

Manutenzione straordinaria immobill - Messa a norma e sicurezza - Spese in applicazione
Digs 81/2008

CA.10.10.01.01.09

Informatizzazione Senvizi - Budget investimenii

CA101001.01.10

Gestione g sviluppo Rete di Alengo - Budget investimenti

CA10.10.01.01.11

Mobilit & scambi cullurali docenti - Budget investimeni

CA10.10.01.01.12

Rapporti Interaazienall, scambi culurali - Budget investimenti

CA.10.10.01.01.13

Comunicazione di Ateneo - Budget investimenti
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DIFPARTIMENTO

DI INGEGNERIA
Allegato n. 3
PROPOSTA DI RIAPPLICAZIONE ALL'ESERCIZIO 2018 DELLE DISPONIBILITA' LIBERE RISULTANTI AL
31/1212017
Voce COAN Denominazione Totale
CA.10.10.01.01.14 Acquiste, manutenzione, noleggio, esercizio veicoli - Budget investimenti
CA.10.10.01.01.15 Spese inerenti l'orientamento universitario - Budget investimenti
CA.10.10.01.01.16 Progetti Ill Missione - Budget investimenti
CA.10.10.01.01.17 Spese funzionamento Servizio Prevenzione e Protezione - Budget investimenti
CA.10.10.01.01.18 Funzionamento Strutture Didattiche finanziate da Esterni - Budget investimenti
CA.10.10.01.01.19 Ricerca di base - Budget investimenti
CA.10.10.01.01.20 Funzionamento strutture didattiche - Budget investimenti
CA.10.10.01.01.21 Costi operativi su economie progetti - Budget investimenti
CA.10.10.01.01.22 Costi operativi altri progetti Amministrazione centrale - Budget investimenti
TOTALE GENERALE AL 31/12/2017 75.007,29
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Chapter 1

Introduction

This document contains the report of my research activities in the last year (2016/2017),

The first part of the seport describes a nove! contribution on human-computer interaction systeimns,
The proposed strategy addresses the problem of providing a natural language description of a scene per-
eeived through a vision sensors, This is referred by the research community as Natural Language Video
Description (NLVD) and it has a huge impact on systems for home automation. This is the case blind
people assistance, where an NLVD approach could provide them a description about what is happening
in the scene. Another important application is the anomaly detection inside buildings, to detect dan-
gerous scenarios, such as fire or security breaches. Finally, a wser-friendly human-computer interface,
such as a natural language interface, could definitely help users 1 better perceive and interact with home
automation systems. In particelar, in this work, we investigate the ability to generate natural language
descriptions for the scene it observes. We achieve this capability via a Deep Recurrent Neural Network
(D-RNN) architecture completely based on the Gated Recurrent Unit (GRU) paradigm. The system is able
to generate complete sentences describing the scene, dealing with the hierarchical nature of the temporal
information contained in image sequences. The proposed approach has fewer parameters than previous
State-of-the-Art architectures, thus it is faster to train and smaller in memory oceupancy, These benefits
do not affect the prediction performance. In fact, we show that our method outperforms or is compa-
rable 1o previous appreaches in terms of quantitative metrics and qualitative evaluation when tested on
benchmark publicly available datasets and on a new dataset we introduce in this work.

The second part of the report describes a novel approach for robot localization based on vision sen-
sors. Applications in the context of home automation system are usually characterized by GPS-denied
environments (/.. buildings or offices). Hence, vision-based localization is crucial to enable mobile plat-
forms to operate in these scenarios, This work proposes a novel deep network architecture to solve the
camera Ego-Motion estimation problem. A motion estimation network generally learns features similar
to Optical Flow (OF) fields starting from sequences of images. This OF can be described by a lower
dimensioral Jatent space. Previous research has shown how (o find finear approximations of this space.
We propose 0 use an Auto-Encoder network to find a non-linear representation of the OF manifold. In
addition, we propose to lewrn the latent space jointly with the esfimation task, so that the learned OF
features become a more robust description of the OF input. We call this novel architecturs Latent Space
Visual Odometry (L8-VQ), The experiments show that LS-VO achieves 2 considerable increase in perfor-
mances with respect to baselines, while the nomber of parameters of the estimation network only slightly
increases,



Chapter 2

Full-GRU Natural Language Video

Description

2.1 Introduction

The ability to provide a description of the scene in a form that every user can easily understand is key-
stone for the success of effective and user-friendly service robotics products. In fact, a natural language
description offers an interpretable rmanifestation of the robot’s inner representation of the scene and is
aiso a good basis for natural language guestion answering about what is happening in the environment.
Hence, this functionality would provide a friendly interface also for non-expert people who wouid then
be able to easily interact with their home robot in the near future,

In the sight of this, this work addresses the problem of describing a scene in natural languzage, which
is usually referred to as Matural Language Video Description {NLVD). Here we formalize this problem
as a Machine Translation (MT) one, from “visual Ianpuage” o English. Basically, the information in
form of a varying length video sequence is encoded in a fixed-length vector and then decoded in form of
varying fength English sentence (Fig. 2.1).

The video translation is performed via D-RNNs, ie. recurrent models that are able to deal with both
long and short term dependencies in data sequences. Most of the previous approaches rely on the Long
Short-Term Memory (.STM) [1] architecture. However, recent works have devised nove! recurrent ar-
chitectures, such as Gated Recurrent Unit (GRU) [2], Neural Turing Machines (NTM) {31 and Memory
Networks {4], that have shown promising results in different applications. Hence, which memory man-
agement strategy is the most suitable one for the problem of NLVD is still an open question that is worth
being investigated. For this purpose, in this work we compare a NLVD system completely based on the
GRII paradigm and State-of-the-Art approaches that exploit LSTMSs.

In addition, the applicability of such algorithms to mobile robots poses additional constraints in terms
of both time and memory complexity. In fact, in these applications particular attention must be paid to
the robot’s limited memory capacity and to the quick reactivity to the user’s requests.

In this work, a full-GRY NLVD system is proposed, that is able to deal with the hierarchical nature
of the temporal information typical of naturai and generic video sequences and obtains comparable to
superior performance with respect to more complex State-of-the-Art systems. The proposed system fea-
tures a GRU cell modified in order to automatically change its ternporal connection if a boundary, i.e. a
significant modification in the scene, is detected. To the best of our knowledge, this is the first full-GRU
encoder-decoder architecture applied to the problem of NLVD. In particular, having a simpler structure
(fewer parameters) than other gated recurrent layers (e.g. the LSTM), the GRU block is faster-training
and memory saving. This makes it appealing for robotics applications. In addition, a new small dataset
for NLVD in typical service robotics scenarios is used, which offers a fair test bench for the specific
application we target. The relevance of this dataset, is twofold. First, this is the first dataset specifically
collected in typical applicative contexts of a service robot. Second, it gives more insights on the actual
performance of the NLVD models we are testing. Indeed, State-of-the-Art NLVD systems are commonty
trained and tested on videos from the same datasets, which may make their evaluation biased.

To summarize, the main contributions of this work are:

4
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5 “A car arrives and two men get out of it" J

Figure 2.1: Overview of the proposed NLVD system. The robot observes a generic and complex scene
and represents it taking into account both the visual and temporal information, represented via ConvNet
features and an encoding vector, respectively. Then, it outputs a natural language sentence describing the
observed scene. The proposed encoder-decoder scheme is entirely based on GRU recurrent units.

* We devise a novel architecture for NLVD that is able to capture hierarchical temporal information
in general video sequences.

* We show that our full-GRU method obtains superior performance compared to State-of-the-Art
methods that harness LSTM, while having fewer parameters.

* We present a dataset that features a wide range of contexts that are typical for service robotics
applications.

The remainder of this chapter is organized as follows. In Section 2.3 the proposed approach is de-
scribed. Section 2.4 provides a detailed description of the experimental results and conclusion are drawn
in Section 2.5.

2.2 Related Work

In recent years, many researchers from both Computer Vision and Natural Language Processing com-
munities are studying the problem of describing generic videos using natural language phrases (see e.g.
(5. 6.

Some popular approaches [6, 7] are based on filling-in predefined template sentences with the subject-
verb-object concepts detected in the video. In particular, an object detector (e.g. a CNN as in [7]) is used
to recognize the main actors in the video and a Probabilistic Graphical Model (PGM) (e.g. an Hidden
Markov Model as in [6]) is used to predict the relation between them. These approaches have major
limitations. First, the type and the number of the objects and the relations that can be described are
limited to those that the detector and the PGM can estimate. Second, the output descriptions lack in
diversity and naturalness.

Other works [8] propose to tackle the NLVD task in a multi-modal retrieval fashion. In particular,
given a corpus of paired videos and text, the system describes a new video using the sentence associated
to the most similar video in the corpus [8]. Also this approach has some weaknesses. In particular, the
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system is constrained to use the same sentences in the corpus, which may be not semantically relevant for
the new scene io describe.

Among the proposed strategies, treating the NLVD problem as a Machine Translation (MT)} one
gained poputarity f9] and D-RNN demonstrated to be a very promising instrument [10, 11, 12]. This is
particularly true when recurrent models are combined with State-of-the-Art Convolutional Neural Net-
works (ConvNet), even pre-trained.

Despite of the success of recent State-of-the-Ar approaches, NLVD is still a particularly challenging
probiem, firstly due to the “ohject” of the description itself, i.e. the video sequence, that is typically open-
domair and complex in real scenarios. In particuiar, the content of the videos can be highly diverse and
the temporal dependencies between the depicted events can be at different granularity. Some architec-
tures exist that produce accurate descriptions of videos, but ia general these are either very short or very

-specificcor-bothi-iesthey-depictsimple.activities-of-a-particular-domain with. few. :actors. . 0. e SORNG iz i ciz inse

{11, 71. Those kinds of video sequancas are far simpler than the typical complexity that a robot faces in
real application contexts. The systems presented in [10] and [12} deal with geperic and complex videos.
Both of them represent the video sequence by mean-pooling the ConvNet features extracted from each
frame, then decode the sentence with a LSTM-based decoder. A major drawback of those strategies is
that they do not take into account the temporal structure of the video sequences due to mean-pooling.

Indeed, when considering more complex and generic video sequences it is crucial to deal with tem-
porai dependencies at different granularity. This is done in [I3, 14] and also in this work, where a
hierarchical representation of the temporal information is explicitly learned. In [13] the authors draw
from ConvlNets the idea of convolutional operations and build 2 multi-level LSTM-based encoding able
to capture longer time dependencies between the content of the frames. Then, a LSTM decoder produces
the description exploiting an attention mechanism (that is basically a learned weighting strategy). The
work of [14] is the most similar to our work, It presents a LSTM-based decoder that contains a boundary-
aware LSTM cell. This cell and a second layer LSTM block build an encoding of the video sequence
which is then decoded via a GRUL

All of the above approaches, either consists of fuil-stack LSTM architectures or limit the use of the
GRU to the decoding phase. In this work, we present an encoder-decoder architecture that is completely
based on GRY blocks, which have fewer parameters than LSTM, thus resuiting arguably more suitable
for robotics applications. This is motivated also by the stedy reported in {15], that compares the GRU and
the LSTM cells on various tasks. Using input, stale and output vectors of the same dimensionality, the
GRU outperforms or is comparable to the LSTM in terms of convergence time, parameters update and
generalization.

2.3 Ewncoder-Decoder full-GRU Architecture

In this section our proposed model is presented. The video frames are described via the ResNet50 and the
C3D ConvNets (see 2.3.1). The obtained faature vectors are then fed, one at each time-step, in the first
layer of the encoder. This is our proposed BA-GRU recurrent block, that encodes the video frames untit a
boundary is detected. Afterwards, the first-layer encoding is fed to the second layer of the encoder, which
consists of a classical ORU block (see 2.3.2). The output of the encoding phase is a vector representing
the entire video sequence. Finally, the GRU decoder produces the description emitting the most probable
word at each time-step, conditioned 1o the video vector representation and the previous emifted words
(see 2.3.3). The captioning process ends when a <EOS> tag (Le. the full-stop) is emitted. A pictorial
representation of the system is shown in Fig. 2.2.

2.3.1 Video Frames and Caption Words Preprocessing

The video frames are preprocessed as follows, The output of the last fully connected layer of the ResNet50)
ConviNet [16] is computed every five video frames, to capture the appearance of the scene. To the same
video frames is associated alse the cutput of the C3D ConvNet [17] to captere the movement in the
scene, based on partially overlapped stiding windows of frames. The output of the two ConvNets are
concatenated (forming a 2048+4096-dimensional vector) and mapped in a leamed 512-dimensional lingar
embedding. The entire video is then represented by a sequence of features vectors (X, Xz, ..., X5, where
the z. vectors are the feature vectors extracted trom the frates of the video,
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Figure 2.2: Architecture of the proposed system. Recurrent layers are depicted as unfolded graphs for
explanatory purpose.

The captions are preprocessed as follows. First, the words are converted to lower-case and the punc-
tuation characters are removed. Then, begin-of-sentence (<BOS>) and end-of-sentence (<EOS>) lags
are added before and behind the sentence, respectively. Finally, the sentences are tokenized. From the to-
kenized sentences, we build a vocabulary (D). To prevent the formation of a large vocabulary containing
many rare words, we retain only those tokens that appear at least five times in the caption corpus. To each
token is associated an index in the vocabulary. based on its frequency in the vocabulary. A caption is then
represented by a list of one-hot vectors (¥4, ¥, ..., ¥ ), each of them corresponding to the representation
of its words in the vocabulary. Similarly to what is done for the frames features, the captions are mapped
in a learned 512-dimensional linear embedding.

2.3.2 Video Encoder

In this work, we build upon the boundary-aware LSTM (BA-LSTM) cell presented in [14] and devise a
boundary-aware GRU (BA-GRU) cell. This cell is the first layer of a two-layers encoder. The second
layer of the encoder is a simple GRU cell [2].

The BA-GRU is a modification of the classical GRU cell (see Fig. 2.2, top right). The GRU is
a recurrent neural networks with gating strategies to model wider temporal dependencies in the input
sequence. The GRU is characterized by an update gate z; and a reset gate r;. At each timestep, a
candidate activation h, is computed based on the current input x;, the previous inner state h;_, and the
values of the gates. In particular, the z, gate controls how much the inner state h, has to be updated, the r,
gate controls how much the previous inner state h,_; influences the candidate inner state value h,. More
formally, the GRU is defined by the following equations:

hy = (1 —z)he—1 + 2l @.1)

hy = tanh(WieX, + Win(r: @ hy_1) +by) 22)
r: = (WX + Wrphey +by) (2.3)

zy = o(Wopxy + Wophi—y +b.) 2.4)

where the W.,,s and b, s are learnable weight matrices and bias vectors, o is the sigmoid function, tanh
is the hyperbolic tangent function and ® is the element-wise product.

In this work, we modify the GRU by adding a boundary aware gate s,, that modifies the inner connec-
tivity of the unit based on the input and the inner state. In particular, when a substantial change in input
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sequence occurs, a boundary is estimated by a leamable function. Consequently, the ioner state by is
emitted as cutput (we denote it as hf;1 = hs_y) and then re-initialized to zero according to:

byt hf_—}(l - St) (2.5)
The boundary-aware gate is defined as follows:
5 = 7(WT (WieXe + Wonle—1 + bs)) (2.6)

where W..s and b, are leamnable weights matrices and bias vectors. In this study, we set to 128 the
number of their rows. The row vector w2 makes the input to the 7(-) function a scalar. The 7(-) function

is given by:

otherwise

(= i{l] ¢4 W RN i S a7

The given output hf' summarizes the video substream before the boundary, which is then composed
by homogeneous frames. For an input video, the BA-GRU block outputs as many vectors hl, as the
number of detected boundaries (h'i’l, h;l, - hﬂ), with m < n. Those vectors are gives in jnput to the
second layer of the encoder, which is a standard GRU block. This layer encodes the hi.l vectors in a
unique vector v, that represents the entire video. The v vector, that is the final output of the two-layer

encoder, is fed to the decoder.

The Boundary-Aware Gate Training Details

The output 5; of the boundary-aware gate can be either 0 or I, depending on the value of a sigmoid
function applied 16 the input of the gate. Thus, following the approach of [14], in the training phase
we model it as a stochastic binary neuron and learned its weights, while in test phase we use it with the
learned weights as the deterministic neuron defined in Eq.2.7. In particutar, we re-write the activation
function 7{-} as:

T() = lg(.]}z, T ZJ(O, l} {28)

where 1, is the indicator function and 24(0, 1) denotes the uniform distribution between 0 and 1.

Note that 7(-} in Eq.2.7 is basically the composition of a step function and a sigmoid function. Thus,
its derivative is equal to 0 everywhere except in 0, Z.e. it is not continuous and smooth and it is also mostly
flat. Hence, we cannot apply the standard back-propagation to compute the gradient in this gate. To
overcome this issue, we follow the same approach of [14], that estimated the gradient by approximating
the step function 7{-) as the identity function [18]. The derivative of 7(-) then becomes:

or do (M1 — ol
*5(*;“)*(') = m(') =a()(1 - o()) 29

In the test phase, we use the deterministic form of 7(-) (Eq.2.7), the parameters of which have been
learned in the teaining phase using Eq.2.8 (in the forward pass) and Bg.2.9 (in the backward pass).

233 Caption Decoder

The decoder takes as input the video representation v and the ground truth sentence (¥,.¥,, ..., ¥ ) At
each timestep, it outputs 2 word y, that is the most probable next word of the description, given the
previcus output words and the video representation.

To handle both the time-varying input (¥, ¥9, ... ¥, } and the constant input v, we modify BEq.2.2-2.4
from the original GRU formulation as:

h, = tanh{Wpy Wy, + Wao¥ + Win(r: © he—y) + by) (2.10)
= U(Wrywiy: 4 Whev + Wipho + br) .11)
= O'(Wzyt’i{wyt + quv + thhf—l + bz) (2 12}

8
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where the W, s and b,s are learnable weight matrices and bias vectors respectively, o is the sigmoid
function and @ is the element-wige product. The matrix W, maps the input one-hot vectors representing
the words ¥, in the vocabulary space in a lower dimensional space (512-dimensional embedding). The
output of the decoder (which we denote hY = b,) is then mapped back in the original higher dimensional
space as y; = Wphy,

The probability of the next word in the description is modeiled via the softmax function, i.e.

ey :_r WP"?

P ¥ Wahi
¥YEL

Priyviye. Y1, ¥Yi_1, %) ~ 2.13)

Finatly, the objective function to optimize is the log-likelihood of the correct words over the sentence Z.e.

L
m\gx; l0gPr{(¥y{¥o, Y1s - ¥i_1, ¥) 2.14)

where W denotes all the parameters of the model.

24 Experiments and Results

In rhis section, we present the experiimental setup and the obtained results of our method.

2.4.1 Datasets Details

We employ two publicly available large datasets that are commonly used to study the NLVD problem.
In addition, we test on a smaller dataset that we collected to be representative of daily activities thar are
typical of service robotics scenarios.

Max Plank Institute for Informatics Movie Description Dataset (MPIE-ME)  This dataset {19} con-
tains aver 68 000 clips of average ds each, from a corpus of 94 HD movie of different genres. Those clips
are associated with sentences taken from the movie script and the transcribed Descriptive Video Service
(DVS') track. As a common practice, we use the training/validation/test split provided by the authors
of the dataset, resulting in 5G 816 training clips, 4030 validation clips and 6584 1est chips. This split is
the same typically used for NLVD systems [5, 9, 13, 14, 20, 21]. The vocabulary is obtained from the
training corpus and consists of 7198 words.

The Microsoft Research Video Deseription Corpus (MSVD)  This dataset [22] contains home-made
10-20s long videos from YouTube. The topics of the videos include sporis, animals and music. We retain
the 1970 ciips that have English captions associated. The captions are on average 43 for each video and
have been collected by the Amazon Mechanical Turk service. As the common practice [9, 10, 12, 13,
14, 211, we use the first 1200 vidzos for training, the next 100 video for validation and the last 670 video
for testing. Note that each video-caption pair is considered as a unique sample, so the actual number of
samples in each split is average 43 times the number of videos. Again, we constrict the vecabulary from
the training set and obtain a vocabulary of 4215 words.

Intelligent Systems, Awtomation and Robotics Laboratory Video Description Pataset (JSARLab-
VD) For this work, we collect a relatively small dataset. Despite that, our dataset is still generic in
terms of depicted actions, environment and involved actors. Note that, none of the above datasets have
been conceived for service robotics appiications. This was a major metivation for us to produce the
dataset. It comtains 100 videos which length varies from 5s to 30s. Each video is paired with 5 manually
obtaired independent captions, for 2 total of 500 semples. The dataset features both high resolution and
tow resolution videos, In particular, the latter are obtained using the buift-in camera of the COZMO oy

YPescripdve Video Service is an audio teack associated to a mevie ta allow the visually impaired people to enjoy also the visnal
content of the movie,
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robot by Anki® during the experimental phase of this study. In this work, we use the entire ISARLab-VD
cataset for test only.

2.4.2 Evaluation Metrics Overview

In this work, we adopt classical natural langnage processing metrics for the evaluation of our method,
which is a common practice in the NLVD research. These metrics are briefly described here for clarity
and we refer to [23, 24, 25, 28] for further details. First note thal & n-gram is a sequence of n consecutive
words. When comparing a candidate sequence X and a reference sequence Y, the n-gram recall is the
proportion of n-grams in Y that appear also in X, while the #-gram precision is the proportion of #-grams
in X that appear alsain Y.

:woThe-first- mettic-weise:is-BLELL 23 in-dtsA~gram variant:Jtis:a.precisionzoriented. metric. designed oo

for MT evaluation. Basically, it combines the n-gram precision for each n-gram up to length 4 and
penalizes the difference in length between the candidate and the reference sentences. BLEU corecelates
welt with human judgement on the quality of the translation if evaluated on the entire test corpus, but s
correfation at sentence level is poor.

We also adopt another MT evaluation metric, namely METEOR [24]. It combines unigram preci-
sion and recall based on matching unigrams in the candidate and reference sentences. iUnigrams can
be matched in their exact form, stemmed form, and meanmg. METEOR correlates well with human
Judgement also at sentence level,

The third metric we use is ROUGE [25] in its variant ROUGE, that considers the Longest Common
Subsequence (LCS) of the candidate and the reference sentence. ROUGE is a recall-oriented metric
designed for summarization evaluation following the idea that a good candidate summary overlaps a
reference summary, Note that all ROUGE variants correlate well with human judgement.

Finaily, we adopt a recently developed metric for assessing image description quality capturing human
consensus on it, namely CIDEr {26]. It is based on the average cosine similarity between n-grams of
different order (up to 4-grams) and rewards length similarity between candidate and reference sentences.
Cosine similarity aliows taking into account both precision and recall. This metric correlates wel with
human judgement by design, thus is particularly suitable for the task of NLVD.

2.4.3 Baseline Methods Overview

We quantitatively compare our system to some of the State-of-the-Art techniques presented in Section
2.2, namely SA-GoogleNet+3D)-ConvNet [21], S2VT [9], LSTM-YT {10], LSTM-E {12}, HRNE [13]
and BA-LSTM [14]. In addition, we compare to Venugopalan et al. {20] and to Rchrbach et al. [3]. SA-
GoogleNet+3D-CNN applies an attention mechanism to select the most relevant video frames based on
GoogLeNet [27] and 3D-CNN [28] extracted features, and an LSTM to gencrate the description sentence.
S2VT uses a stacked LSTM encoder-decoder on the basis of ConvNet features extracted from each frame
via VGG-16 [29]. LSTM-YT mean-pools each frame’s AlexNet [30} ConvNet features and decodes
this representation via a LSTM. LSTM-E leams an embedding based on the frame-level extracied mean-
pooled VGG-19 [29] and C3D {17] ConvlNet features and the video description, then generates a sentence
via a LSTM. HRNE represents sach video frame via GoogLeNet features and applies a hierarchical mulii-
layer LSTM encoder and a LSTM with soft-attention decoder. BA-LSTM is the most similar to our
approach, but it uses LSTM blacks in the encoding phase. Venugopalan et al. [20] improves S2VT using
a neurat language model and distributional semantics learned from a large text corpus. Rohrbach et al. {5]
uses CRFs to obtain tuples of verbs, objects and places on the basis of ConvNet features extracted from
the video via pre-teained ConvNets, then translated the tuple into a sentence via a LSTM.

Differently from SA-GeogleNet+3D-CNN and HRNE, we do not apply any attention mechanism to
deal with different-granularity time dependencies in the videos. As opposed to LSTM-YT and LSTM-E,
we explicitly model the temporal dimension of the video sequence via the recurrent encoder, Finally,
another major difference between our approach and the baselines is that we use a full-GRU architecture.

Note that, since BA-LSTM is the closest to our method, we used the same settings as the authors of
[14] 0 better cornpare the two architectures. In particular, we set to 1024 the size of the inner state vegtors
and use the same size for input vectors, embeddings, weight matrices and bias vectors. Embedding

Ihttpsofwww.anki.comicn-us/cozmo
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2.4 Experiments and Reselts 2. Full-GRU Natural Language Video Description

Model B M Rg C
SA-GoogleNet+3D-CNN [21] - 3.7 - -
S2VT-RGE 9] 05 63 153 90
Venugopalan et al. [20] - 68 - -
Rohrbach et al. [5] 6.8 7.0 160 100
BA-LSTM [14] 68 70 187 {08
BA-GRLU {ours) 08 68 1585 117

Table 2.1: Experiment results on the MPII-MD dataset in terms of the guantitative evaluation metrics
BLEU in its 4-gram variant (By), METEOR (M), ROUGE in #ts LCS variant (Rz ) and CIDEr (C). Bold
indicates the best performance.

Madel By M Ry C
SA-GoogleNet+3D-CNN [21] 419 296 - -
LSTM-YT [10] 333 291 . .
S2VT (9] - 29.8 - -
LSTM-E [12} 453 310 - -
HRNE [13] 46.7 339 - -
BA-LSTM {14] 41.5 313 686 355
BA-GRU (ours) 425 320 688 59.0

Table 2.2: Experiment results on the MSVD dataset in terms of the quantitative evaluation metrics BLEU
in itg 4-gram variant (B}, METEOR (M), ROUGE in its £.CS variant {R;} and CIDEr (C). Bold indicates
the best performance. Values in italic are obtained by re-running the code released by the authors of [14],
which differ from those dectared in their paper.

matrices and weight matrices applied to inputs are initialized via the Glorot normal initializer, those
applied to inner states are initialized via the orthogonal initializer and the bias vectors are initialized 1o
zero. We perform the training until the validation loss stops improving {or up to 100 epachs), with mini-
batch size of 128. As optimizer, we apply Adadelta with learning tate {,. — 1.0, decay constant p = 0.05
and patameter ¢ — 1078, The input and the output of the BA-GRU and the GRU in the encoding phase
are regularized via Dropout with retain probability p = 0.5,

2.4.4 Results on the Standard Datasets

The performance is evaluated on the MPI-MD and MSVD datasets and expressed in terms of the widely
used metrics presented in 2.4.2. For consistency sake with the baselines, we use the original COCO
evaluation script®.

The results are summarized in Tab, 2.1 for the MPII-MD dataset and in Tab, 2.2 for the MSVD dataset.
It can be observed that our method is competitive with all the other approaches in terms of all the metrics.
More importantly, it outperforms all the baselines in terms of the CIDEx metric, that has been reported in
{20] best capturing human consensus on captions.

A direct human evaluation of the quality of the produced caption is usually more representative of the
actual performance of NLVD algorithms, since video description is somewhat a tricky task to evaluate
via a numerical metric. In this respect, we qualitatively evaluate our system and the rost similar among
the baselines i.e. BA-LSTM on the MPII-MD and MSVD datasets. Some examples of this comparison
are reported in Fig. 2.3. Note that, for the MSVD dataset the reported ground truth description is the
most representative of the multiple caption associated to the clips. From these examples, we can argue
the cause of such low evaluation metrics values, especially for the MPI-MD dataset (Tab. 2.1). Indeed,
in this dataset the ground truth was obtained from the script and the transcribed DVS track, aligned to the
original mevie. Hence, in many cases, the ground truth description is not limited to the visual content of
the scene, but also takes inio account the contextoal events of the plot. NLVD systems instead can onfy
rely on the visuai information in the isolated clip. Conversely, the ground truth captions in the MSVD

Mpups:ifgithub.com/Aylinfeoco-caption



2.4 Experimenis and Results 2. Full-GRU Natural Language Video Description

GT: A man is lifting a truck.
BA-LSTM: A wan is riding a car.
BA-GRU: A man is lifting a car.

(@

GT: News crew helicopters hover in the air above
the scene.
BA-LSTM: The crowd ig in the river.
BA-GRU: Someone locks at the crowd and turns to
the ground.

(b
Figore 2.3: Example resuits on a video from the MSVD test subset 2.3(a) and on a video from a movie in
the MPIL-MD test subset 2,3(b).

dataset are more precise and higher in number when compared to those of the MPII.MD dataset (~40
versus 1-2). Thus, we can conclude that the performance of NLVD algorithms trained and tested on the
MSVD dataset are both quantitatively and qualitatively bettsr.

In addition, to gain some insights on the statistical significance of the presented quantitative results,
we perform a K-fold cross-validation (with K= 10) of our approach and the BA-LSTM baseline on the
MSVD dataset. We choose this dataset because it is srnaller than the MPIL-MD dataset, thus the model
assessment experiment can be run in less time. The resalting values for the evaluation metrics, expressed
in terms of mean and standard deviation, are reported in Tab. 2.3, It is observed that our method is stili
comaparable to the BA-LSTM baseline.

We also evaluate the training and testing time of the ten different variants of both BA-GRU and BA-
LSTM. In particular, for BA-GRU the test time is on average 190.89 + 5.28 ms, while for BA-LSTM is
on average 197.78+3.70 ms. In terms of wraining time, for BA-GRU it is on average ~ 8h21'+ ~ 5h34',
while for BA-LSTM it is on average ~ 13140+ ~ 3h22', Despite both the BA-GRU and the BA-LSTM
require much time to complete the training phase, saving 5 houss could make the difference during the
deployment of the architecture in a real robotic application. This is the case, for instance, of parameter
tuning procedures, where many different models are trained and evaivated to select the best network
configuration and, thus, using the BA-GRU makes a huge difference with respect to the overall time.

The GRU block has fewer parameters than the LSTM black. In particular, our method BA-GRU re-
quires approximately 114 B of memory to store network weights, while the BA-LSTM needs 128 B.
Another benefit of using fewer parameters is that it reduces the risk of overfitting and, potentiatly, it
allows the model to better generalize on completely new datasets.

245 Results on the ISARLab-VD Datasets

We further evaluate and compare BA-GRU with BA-LSTM on our collected dataset. Note that, in this
case the algorithms are not trained on any subset of the ISARLab-VD dataset. With this experiment
we want to test the generalization capabilities of the two architectures. We report the results of both

12



2.5 Conclusions and Future Developmenis 2. Full-GRU Natural Language Yideo Description

Model By M Ry C
BA-LSTM 41.5£10 314403 685405 561420
BA-GRU 41.1+1.1 31.240.7 683405 335138

Table 2.3: Experiment results of the K-fold cross-validation on the MSVD dataset in terms of the quan-
titative evaluation metrics BLEU in its 4-gram variant (B;), METEOR (M), ROUGE in #ts LCS variant
(R} and CIDEr (C). The results are expressed in terms of mean and standard deviation.

Model By M Ry, C
BA-LSTM on MSVD 140 195 516 233
BA-GRU on MSVD 4.7 206 528 27

BA-LSTM on MPII-MD> 000 084 182 069
BA-GRUon MPI-MD 000 12} 202 106

Table 2.4: Experiment results on the ISARLab-VI» dataset in terms of the quantitative evaluation metrics
BLEU in its 4-pram variant (B4), METEDR (M), ROUGE in its LCS variant (R; ) and CIDEr {C}. Bold
indicates the best performance.

the BA-GRU and BA-LSTM architectures trained on either the MPII-MD and MSVD datasets, both in
quantiative and qualitative terms.

In particular, in Tab. 2.4 we repont the results in terms of the previously defined evaluation metrics,
For the statistical significance of those results, we refer to Tab. 2.5, There we also report the resuits of the
ten variants of the BA-GRU and BA-L3TM models obtained via K-fold cross-validation on the MSVD
dataset,

Some exemplar cases of the qualitative evaloation on this dataset are reported in Fig. 2.4 with ex-
amples on high resolution and low resolution videos. The teported ground truth description is the most
representative of the muitiple caption associated to the clips. We refer to the complete results corpus
availabie at http://isar.unipg.it/index.phptoption=com_contentiaview=articlecid=46scatid=24
Itemid=188 for further examples. It can be observed that the quality of the videos does not influence
the semantic and syntactic correctness of the description produced by the two methods. On the other
hand, we observe that the captions for the videos of the ISARLab-VD dataset are simpler and less precise
than those produced for the test subset videos of the public dataset used for the training. This suggests
that these NLVD systems do not generalize well with respect to scenarios that significantly differ from
those observed in training phase. Despite that, we can observe that the use of the BA-GRU gives a slight
performance improvement. This suggests that the BA-GRU could be betier suited to achieve architecture
maote robust to domain changes. The exploration of this aspect is beyond the scope of this work, but this
insights could be definitely useful for future investigations.

2.5 Conclusions and Future Developments

This work focuses on the NLVD task and presents a full-GRU encoder-decoder architecture to address it.
We show that the proposed approacl: is faster to train and less memory consuning that other State-of-the-
Artalgorithms. QOur method is also competitive or superior in terms of performance on the public datasets
which were partiaily nsed also for teaining. The experimental results on the devised dataset we use only

Model B, M R C
BA-LSTM 142408 190403 50807 252440
BA-GRU 150500 194405 512408 247126

Table 2.5: Experiment results of the ten variants of the BA-GRU and BA-LSTM models obtained via
K-fold cross-validation on the MSVD dataset in terms of the quantitative evaluation metrics BLEU in
its 4-gram variant (B4), METEOR (M), ROUGE in its LCS variart (Rz) and CIDEr (C). The results are
expressed in terms of mean and standard deviation.
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2.5 Conclusions and Future Developments 2. Full-GRU Natural Language Video Description

1

Wi

GT: A man is walking in a office corridor.
BA-LSTM (MSVD): A man is jumping.
BA-GRU (MSVD): A man is running on a wall.

BA-LSTM (MPII-MD): TWO man walks up.
BA-GRU (MPII-MD): Man opens the door and walks
out of the office.

il -
U - reRt
> =

GT: Someone is driving a car.

BA-LSTM (MSVD): A car is driving down the road.

BA-GRU (MSVD): A man is driving a car.

BA-LSTM (MPII-MD): Two car pulls up.

BA-GRU (MPII-MD): Car pulls u the street and runs
out of the car.

(b)

GT: A man is playing a guitar.

BA-LSTM (MSVD): A man is playing a guitar.

BA-GRU (MSVD): A man is playing a guitar.

BA-LSTM (MPII-MD): Two man is a gun.

BA-GRU (MPII-MD): Sound of the man is in the middle
of the window.

(c)

Figure 2.4: Example results on videos from the ISARLab-VD dataset. In particular, 2.4(a) and 2.4(b)
refer to videos that have been collected with two different hig resolution cameras, while 2.4(c) refers to a
low resolution video collected during the experiments with the Anki’s COZMO robot.
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2.5 Conclusions and Future Developmerits 2. Full-GRU Natural Language Video Description

for test demonstrate that our proposed BA-GRU architecture can peneralize better than the BA-LSTM
baseline. This is a pivotal aspect for applications to service robotics, where the iraining phase has to be
absent or at least very short.

In a lfelong application the robot will likely collect a continuous video stream. This means that the
videos it will describe will be longer than those in the datasets we used both for training and test. This
drawback can be overcome by cutting the continuous video sequence in shorter chunks and describing
each chunk using our proposed method as it is. However, being able to deal with much longer videos is
surely of great interest and the development of effective solutions to this problem will be the subject of
future work. '

Finally, rote that the iraining strategy for our method is based on maximum likelihood estimation,
This encourages the syntactic and semantic correctness of the praduced descriptions and ailows the robot
to accomplish the NLVD task and be helpful to the end user. However, diversity is not taken into account.
Providing the capability to generate diverse descriptions for the same video sequence could be an inter-
esting extension of our proposed approach. This could be accomplished by exploiting different learning
strategies, as for example adversarial learning.

The code and the dataset used for this study are publicly available at bttp: //isar.unipg. Lt /index.
phpioption=com_contentiviewsarticlesid=46scatid=24Itemid=188,



Chapter 3

LS-VO: Learning Optical Subspace for

Robust VO Estimation

3.1 Introduction

Leaming based Visual Odometry (L-VO) in the last few years has seen an increasing attention of the
robotics community because of its desirable properties of robusmess to image noise and camera cali-
bration independence [31], mostly thanks to Convolutional Neural Networks (CNNs) representational
power, which can complement curtent geometric solutions [32]. While current results are very promis-
ing, making these solutions easily applicable to different environments still presents chalienges. One of
them is that most of the appeoaches so far explored have not shown strong domain independence and
suffer from high dataset bias, i.e. the performances considerably degrade when tested on sequences with
motion dynamics and scene depth significantly different from the training data {33]. In the context of
L-VO this bias is expressed in different Optical Flow {OF) field distribution in training and test data, due
to differences in scene depth and general motion of the camera sensor.

One possible explanation for the poor performances of learned methods on unseen contexts is that
most current learning architectures try to extract both visual features and motion estimate as a single
training problem, coupling the appearance and scene depth with the actual camera motion information
contained in the OF input. Some works have addressed the problem with an unsupervised, or semi-
supervised approach, trying to learn directly the motion representation and scene depth from some kind
of frame-to-frame photometric error {34] [35] {36). While very promising, these approaches are mainly
devised for scene depth estimation and st fall short in terms of general performances on Ego-Motion
estimation,

At the same time, previous research has shown how OF fields have a bilinear depeadence on motion
and inverse scene depth [37]. We suggest that this is the main reason for the low generalization properties
shown by learned algorithms go far. Past research has shown that the high dimensional OF field, when
scene depth can be congidered focally constant, can be projected on a rmuch lower dimensional lineas
space {38] [39]. However, when these conditions do not hold, the OF ficld subspace exists but is highly
non-linear.

In this work we propose to exploit this knowledge, estimating the latent OF representation using an
Auto-Encoder {AE) Neural Network architecture as a non-linear subspace approximator. AE networks
are able to extract latent variable representation of high dimensional inputs. Since our aim is to make
the Ego-Motion estimation more robust to OF fields that show high variability in their distribution, we
do not simply use this subspace to directly produce motion prediction. Instead, we propose a novel
architecture that jointly trains the subspace estimatior and Ego-Motion estimation so that the two network
tasks are mutually reinforcing and at the same time able to better generalize OF field representation. The
conceptual architecture is shown in Figure 3.1. To demonstrate the increased performances and reduced
dataset bias with respect to high dynamical variation of the OF field, we test the proposed approach
on a challenging scenario. We sub-sample the datasets, producing sequences that simulate high speed
variations, then we train and test on sequences that are both different in appearance and sub-sampling
rate.
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3.2 Related Works 3. LS-VO: Learning Optical Subspace for Robust VO Estimation

IMAGE i-1 IMAGE i

= = L OF
Tl ! EXTRACTION

Vo
PREDICTION

Figure 3.1: Overview of the method: We propose a network architecture that jointly learn a latent space represen-
tation of the Optical Flow field and estimates motion. The joint learning makes the estimation more robust to input
domain changes. The latent representation is an input to the estimation network together with the lower level features.

3.2 Related Works

3.2.1 Ego-Motion estimation
Geometric Visual Odometry

G-VO has a long history of solutions. While the first approaches were based on sparse feature tracking,
mainly for computational reasons, nowadays direct or semi-direct approaches are preferred. These ap-
proaches use the photometric error as an optimization objective. Research on this topic is very active.
Engel at al. developed one of the most succesful direct approaches, LSD SLAM, both for monocular and
stereoscopic cameras [40], [41]. Forster et al. developed the Semi-Direct VO (SVO) [42] and its more
recent update [43], which is a direct method but tracks only a subset of features on the image and runs
at very high frame rate compared to full direct methods. Even if direct methods have gained most of
the attention in the last few years, the ORB-SLAM algorithm by Mur-Artal et al. [44] reverted to sparse
feature tracking and reached impressive robustness and accuracy comparable with direct approaches.



3.2 Related Works 3. L§-VO: Learning Optical Subspace for Robust VO Esthmation

Learned Visval Odometry

Learned approaches go back to the early explorations by Roberts et al. {38, 45), Guizilini et al. [46,
47}, and Ciarfuglia et al. [481. As for the peometric case, the initial proposal focused on sparse OF
features that, faithful to the there s na free lunch theorem, explored the performances of different learning
algorithms such as SVMs, Gaussian Processes and others. While these early approaches altready showed
some of the strengths of L-VO, it was only more recently, when Costante et al. {31] introduced the use
of CNNs for feature extraction from dense optical flow, that the learned methods started to attract more
interest. Since then a couple of methods have been proposed. Muller and Savakis [49] added the FlowNet
architecture to the estimation network, producing one of the first end-to-end approaches. Clark et al.
{50] proposed an end-to-end approach that merged camera inputs with IMU readings using an LSTM

petwork, . Through, this.sensor. fusion, the resulting aleorithm is able 1o give good resulis but requires .. oo oo

sensors other than a single monocular camera. The use of LSTM is further explored by Wang et al. in
[51], this time withowt any sensor fusion. The resulting architecture gives again goed performances on
KITTI sequences but does not show any experiments on environments with different appearance from
the training sequences. On a different track is the work of Pilai et al. [521, that, like [47), locked at the
problem as a generative probabilistic problem. Piliai proposes an architecture based on an MDN network
and a Variational Auto-Encoder (VAE) 1o estimate the motion density given the OF inputs as a GMM.
While Frame to Frame (F2F) performances are on a par with other approaches, they also introduce a loss
term on the whole trajectory that mimics the bundle optimization that is often used in G-VO. The results
of the complete systern are thus very good, However, they use as input sparse KLT optical flow, since
the joint density estimation for dense OF would become competationally intractable, meaning that they
couid be more prone to OF noise thar dense methods.

Most of the described approaches claim independence from camera parameters. While this is true,
we note that this is more an intrinsic feature of the learning approach than the merit of a particular
architectare. The fearned model implicitly learns also the camera parameters, but then it fails on images

collected with other camera optics. This parameter generalization issue remains an open problem for
L-VO.

3.2.2 Semi-supervised Approaches

Since dataset bias and domain independence are critical challenges for L-VO, it is not surprising that a
number of unsupervised and semi-supervised methods have been recently proposed. However, ali the
architectures have been proposed as a way of solving the more generai problem of joint scene depth and
motion estimation, and motion estimatior is considered more as a way of improving depth estimation,
Konda and Memisevich 53] used a stereo pair to learn VO but the architecture was conceived only
for stereo cameras. Ummenhofer and Zhou [34] propose the DeMoN architecture, a solution for FIF
Structure o Motton (SfM) that trains a network end-to-end on image pairs, levering motion paraliax.
Zhou et al. [35] proposed an end-to-end unsupervised system based on a loss that minimizes image
warping error from one frame to the next. A similar approach is used by Vijayanarasimhan et al. {36]
with their STM-Net, All these approaches are devised mainly for depth estimation and the authoss give
little or no attention to the performances on VQ tasks. Nonetheless, the semi-supervised approach is one
of the more relevant future directions for achieving domatn independence for L-VO, and we expect that
this approach will be integrated in the current research on this topic.

3.2.3 Optical Flow Latent Space Estimation

The semi-supervised approaches described in Section 3.2.2 make evident an intrinsic aspect of monocular
camera motion estimation, that is, even when the scene is static, the OF field depends both on camera
motion and scene depth. This relationship between inverse depth and motion is bilinear and well known
{54] and is at the root of scale ambigaity in monocular VO. However, locally and under certain hypothesis
of depth regularity, it is possible to express the OF field in terms of a linear subspace of OF basis vectors.
Roberts et al. [45] used Probabilistic-PCA to learn a lower dimensional dense OF subspace without
supervision, then used it to compute dense OF templates starting from sparse opticai flow. They then
used it to compute Bgo-Motion. Herdtweck and Cristébal extended the result and used Expert Systems ©
estirnate motion [55]. More recently, a similar approach to OF field computation was proposed by Wulff
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3.3 Contribution 3. LS-VO: Learning Optical Subspace for Robust VO Estimation

and Black [39] that complemented the PCA with MRF, while Ochs et al. [56] did the same by including
prior knowledge with an MAP approach. These methods suggest that OF field, which is an intrinsically
high dimensional space generated from a non-linear process, lies on an ideal lower dimensional manifold
that sometimes can be linearly locally approximated. However, modern deep networks are able to find
latent representation of high dimensional image inputs, and in this work we use this intuition to explore
this OF latent space estimation,

3.3 Contribution

Inspired by the early work of Roberts on OF subspaces [37], and by recent advances in deep latent space
learning [57], we propose a network architecture that jointly estimates a low dimensional representation
of dense OF field using an Auto-Encoder (AE) and at the same time computes the camera Ego-Motion
estimate with a standard Convolutional network, as in [31]. The two networks share the feature repre-
sentation in the decoder part of the AE, and this constrains the training process to learn features that are
compatible with a general latent subspace. We show through experiments that this joint training increases
the Ego-Motion estimation performances and generalization properties. In particular, we show that learn-
ing the latent space and concatenating it to the feature vector makes the resulting estimation considerably
more robust to domain change, both in appearance and in OF field dynamical range and distribution,

We train our network both in an end-to-end version, using deep OF estimation, and with standard OF
field input, in order to explore the relative advantages and weaknesses. We show that while the end-to-end
approach is more general, precomputed OF still has some performance advantages.

In summary our contributions are:

* A novel end-to-end architecture to jointly learn the OF latent space and camera Ego-Motion esti-
mation is proposed. We call this architecture Latent Space-VO (LS-VO),

* The strength of the proposed architecture is demonstrated experimentally, both for appearance
changes, blur, and large camera speed changes.

Effects of geometrically computed OF fields are compared to end-to-end architectures in all cases.

= The adaptability of the proposed approach to other end-to-end architectures is demonstrated, with-
out increasing the chances of overfitting them, due to parameters increase.
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Figure 3.2: LS-VO network architecture. The shared part is composed of Flownet OF extraction, then
three convolutional layers that start the feature extraction. The last layer of the Encoder, conv4, is not
shared with the Estimator network. From conv4 the latent variables are produced. The Decoder network
takes these variables and reconstructs the input, while the Estimator concatenates them to conv3 output.
Then three fully connected layers produce the motion estimates.
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3.4 Learning Optical Flow Subspaces

Given an optical flow vector u = (u], u;)T from a given OF field x, [37] {39] approximate it with a
linear relationship:

i
un Wz =Y znw GB.1)
i=1
where the columns of W are the basis vectors that form the OF linear subspace and z is a vector of latent
variables. This approximation is valid only if there are some regularities of scene depth and is applicable
only to local patches in the image. The real subspace is non-linear in nature and, in this work, we express
it as a generic fanction u = D(z) that we learn from data by using the architecture described in the

OO g

3.4.1 Latent Space Estimation with Auto-Encoder Networks

Lety € RS be the camera motion vector and x € RZxwxk the input OF ficld, computed with some dense
method, where X(; ;) = U ;) is a 2-dimensional vector of the field at image coordinates {3, 7). Both can
be viewed as random variables with their own distributions. In particular, we make the hypothesis that the
input images lie on a lower dimensional marifold, as in [58], and thus also the OF field lies on a lower
dimensional space © ¢ R¥*¥*} with a distance function § (x{®) %y where x¢}, %) € Q. The true
manifold is very difficult to compute, so we look for an estimate 0 = Q using the model extracted by an
encoding neural network.

Letz € ¥ C B! & w x h be a vector of latent random variables that encodes the variabilities of
OF Geld that lies on this approximate space. The decoder part of the AE can be seen as a function

D(z; 04) = D(z; {Wr, bihk=1. K} (3.2}

where fy = ({Wg, br}, k = 1. K) is the set of learnable parameters of the network (with K upconv
layers), that is able to generate 2 dense optical fiow from a vector of latent variables z. Note that the
AE works similarly to a non-linear version of PCA {57). We define the set © = {D(z;04) |z € ¥Y}as
our approximation of the OF field manifold and use the logaritmic Euclidean distance (as described in
Section 3.4.2 as & loss function) as an approximation of S(D(z(*), D(z(®)). Using this framework the
problem of estimating the latent space is carried out by the AE network, where the Encoder part can be
defined as the function z = E(x; 8, ).

While in {52] the AE is used to estimate motion, and 2 are the camera translation and rotations, here
we follow a different strategy. We compute the latent space for a two-fold purpose: we use the fatent
variables as an input feature to the motion estimation network and we leamn this latent space together with
the estimator, thus forcing the estimator 1o learn features compatible with the encoder representation.
Together these two aspects make the representation more robust to domain changes.

3.4.2 Network Architecture

The LS-VO network architecture in its end-to-end form is shown in Figure 3.2. It is composed of two main
branches, one is the AE network and the other is the convolutiona network that computes the regression
of motion vector y. The OF extraction section is Flownet [591, for which we use the pre-trained weights.
We run tests fine-tuning this part of the network on KITTI {60] and Malaga {61] datasets, but the result
was a degraded performance due to overfitting.

The next layers are convolutions that extract features from the computed OF field. After the first
convolutional layers (conv!, conv2 and conv3), the network splits into the AE network and the estimation
network. The two branches share part of the feature extraction convoelutions, so the entire network is
constrained in learning a general representation that is good for estimation and fatent variable extraction.
The Encoder is completed by another convolutional layer, that brings the input x to the desired repre-
sentation z, and its output is fed both in the Decoder and concatenated to the feature extracted before.
The tesulting feature vector, composed of Jatent variables and convolutional features is fed into a fuily
connected network that performs motion estimation. The details are summarized in Table 3.1.
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Layer name | Kernel size | Stride | output size
Input - - - (94, 300, 2)
LS-VO

Shared convi Tx7 2x 2 | (47,150,64)
Features conv2 bxb 1x1 | {47, 150,64}
Layer conv3 + Ix3 4x4 | (12,35, 64)
Auto- convd 3x3 Ix1 [ (12,38,64)
Encoder upconv 3x3 Tx1 | (48,152,6)
CFOp - - (47,150, 86)
upconv2 =1 ix} {94,300, 2}
maxpool 2x2 2 x 2 (6, 19, 64)

Estimator|| concat  and § - - {36430}

densel - - (H00)

dense? - - {1000)

dense3 - - {6)
ST-VO

st-conv] 3x3 2x2 | (46,149,64)
Feature !| st-maxpooll ¢ 4x4 dx4 | (11,37,64)
Extraction SI-conv2 4 x4 4x4d (9, 35, 20)
S-maxpooi? o 2x32 2x2 | (4,17,20)

concat e and o - - {(27408)

Estimatio st-densel . - (1000}

1‘} st-dense2 . - (6)

Table 3.1: LS-VO and §T-V network architectures

The AE is trained with a pixel-wise squared Root Mean Squared Log Error (RMSLE) loss:

Lag =Y ||log@ + 1) ~ logu® + 1)|3 (33)

where 1( is the predicted OF vector for the i-th pixel, and u(? is the commesponding input to the
network, and the logarithm is intended as an element-wise operation. This loss penalizes the ratio differ-
ence, and not the absolute value difference of the estimated OF compared to the real one, so that the flow
veciors of distant points are taken into account and not smoothed off.

We use the loss introduced by Kendall et al, in [62];

Lea=Y [ 7|3+ 8018 -0]13 (3.4)

where the T is camera translation vector in meters, & is the rotation vector in Buler notation in radians,
and /3 is a scale factor that balances the anguiar and transiational errors. 3 has been cross-validated oa the
trajectory reconstruction error {8 = 20 for our experiments), so that the frame to frame error propagation
to the whole trajectory is taken into account. The use of a Buclidean loss with Buler angle representation
works well in the case of autonomous cars, since the yaw angle is the only one with significant changes.
For more general cases, is better 1o use a quaternion distance metric [63].

fn Section 3.5, we compare this architecture hoth with SotA peometrical and learned methods. ‘The
baseline for the learned approaches is a Single Task (ST) network, similar to the Lb network presented in
[31}, and described in Table 3.1.

343 OF field distribution

Asmentioned in Section 3.4.1, the OF field has a probability distribution that lies on a manifold with lower
dimensionality than the number of pixels of the image. We can argue that the actual density depends on
the motion of the camera as much as the scene depth of the images collected. In this work, we test
generalization properties of the network for both aspects;
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(a) no sub-sampling - 10Hz

(b) sub-sampling 2 - 5Hz

(c) sub-sampling 3 - 3.33Hz

Figure 3.3: Examples of the OF field intensity due to different sub-sampling rates of the original sequences. In the
left are the OF field extracted with Brox algorithm (BF) [64], while on the right the ones extracted with Flownet [59].
While the BF fields look more crisp, they require parameter tuning, while the Flownet version is non-parametric at
test time.

(a) Standard and blurred image

-

(b) Standard and blurred OF field

Figure 3.4: Examples of OF fields obtained applying gaussian blur to image sequences. (a) The image and its blurred
variant is shown, with blur radius 10. (b) The corresponding OF fields. Note the huge change in OF distribution.

i For the appearance we use the standard approach to test on completely different sequences than the
ones used in training.

ii For the motion dynamics, we sub-sample the sequences, thus multiplying the OF dynamics by the
same factor.

iii To further test OF distribution robustness, we also test the architecture on downsampled blurred
images, as in [31].

Examples of the resulting OF field are shown in Figure 3.3, while an example of a blurred OF field is
shown in Figure 3.4. In both images there are evident differences both in hue and saturation, meaning
that both modulus and phase of the OF vectors change.

3.5 Experimental Results

3.5.1 Data and Experiments set-up

We perform experiments on two different datasets, the KITTI Visual Odometry benchmark [60] and the
Malaga 2013 dataset [61]. Both datasets are taken from cars that travel in city suburbs and countryside,
however the illumination conditions and camera setups are different. For the KITTI dataset we used the
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VISOZ-M163] | ORBSLAMIM [44] | ST-VOI (Fiow) LAY L5-V0 Fiow) LEVO (BE

Trasl. Kot Trasl. Rot, Trasl, Rat. Trasl. Rod. Trasl, Rat. Tras), Rot.
KITT1 1 18.13% | 00103 [6271% | 00068 || 12.78% | 0.0607 | S06% | 00205 {| I0.71% | 0.0200 | 6.08% | NO08
RITT 42 15.08% 1 D.0690 | Taif fail 12.30% | 0.038% | 9497 | 00800 | 10855 | 0.0020 | 1905 | 0.0005
KITT? 42 + brur || 52547 | O.0608 1 Bl ] 18.35% | D.OG0Z | 16.99% 1 00627 (| 14477 | U075 | 8.190% | G0Z710

Table 3.2: Performances summary of all methods on the Kitti experiments. The geometrical methods
perform better on the angular rate estimation (in deg/m) on both datasets at standard rate, but usually
fail on others (boss of tracking). Learned methods are consistent in their behavicur in all cases: even if
the general error increases, they never fail to give an cutput even in the worst conditions tested, and the
trajectories are always meaningfiu,

sequences G0 to OF for training and the 68, (9 and 10 for test, as is common practice. The images are all
around 1240 x 359, and we resize them to 300 x 94. The frame rate is 10Hz. For the Malaga dataset we
use the sequences 02, 03 and 09 as test set, and the 01, G4, 06, 07, 08, 10 and 11 as training set. In this
case the images are 1024 x 768 that we resize (o 224 x 170. The frame rate is 20Hz. For the Malaga
dataset there is no high precision GPS ground truth, so we use the ORBSLAM? stereo VO [44] as a
Ground truth, since its performances, comprising bundle adjustment and loop closing, are much kigher
than any monocufar method.

The networks are implemented in Keras/Tensorflow and trained using an Nvidia Titan Xp. Training
of the ST-VO variant takes Gk, while LS~V 27h, The ST-VO memory occupancy i on average 460MB,
while LS-VO requires 600MB. At test time, computing Flownet and BF features takes on average 12.5ms
and 1 ms per sample, while the prediction requires, on average, 2 — 3ms for both §ToVQ and LS-VO. The
total time, when considering Flownet features, amounts to 14.5ms for ST-VO and 15.5ms for LS-VO,
Hence, we can observe that the increased complexity does not affect much computational performance at
test time.

For all the experiments deseribed in the following Section, we tested the LS-VO architecture and the
ST-VO baseline, Fusthermore, on all KITTI experiments we tested with both Flownet and BF features.
While the contribition of this work relates mainly on showing the increased robustness of the proposed
method with respect to jearned architectures, we also sampled the performances of SotA geometrical
methods, namely VISO2-M [65} and ORBSLAM2-M [44] in order to have a general baseline.

3.5.2 Experiments

As mentioned in Seciion 3.4.3, on both datasets we perform three Kinds of experiments, of increasing
difficulty. We observe that the original sequences show some variability in speed, since the car travels
in both datasets at speeds of up to 60Km/h, but the distribution of OF field is still limited. This implies
that the possible combinations of linear and rotational speeds are limited. We exiend the variability of
OF field distribution performing some data augmentaiion. Firstly, we sub-sample the sequences by ?2
and 3 times, to generate virtual sequences that have OF vectors with very different intensity. In Figure
3.3, an example of the different dynamics is shown. In both KITTI and Malaga datasets we indicate the
standard sequences by the d1 subscript, and the seguences sub-sampled by 2 and 3 times by d2 and 43,
respectively. In addition to this, we generate blurred versions of the 42 test sequences, with gaussian blur,
as in [3I}. Then we perform three kinds of experiment and compare the results. The first is a standard
training and test on dl sequences. This kind of test explores the generalization properties on appearance
changes alone. In the second kind of experiment we train all the networks on the sequences di and ¢32
and test on d2. This helps us to understand how the networks perform when both appearance and OF
dynamics change. The third experiment is fraining on 41 and d3 sequences, and testing or the on the
blurred versions of the 42 test set (Figure 3.4).

The proposed architecture is end-to-end, since it computes the OF field through a Flownet network,
However, as a baseline, we decided to test the performances of all the architecture on a standard geomet-
rical OF input, computed as in [64}], and indicated as BF in the following.

In addition, we train the BF version on the RGB representation of OF, since from cur experiments
performs slightly better than the flcating point one.
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Figure 3.5: Comparison between all methods on KITTI dataset, with no sequence sub-sampling. It is
evident that the LS-VO network outperforms the §T equivalent, and in the case of the BF OF inputs it is
almost always better by a large margin. Geometrical methods ouiperform learned ones on angular rate.
ORBSLAM?2-M i not shown in 3.5(2) and 3.5(b) for axis clarity, since the error is greater than other

methods.
VISO2-M [65] ORBSLAMZ-M [44] ST-VO (Flow) 1.8-VO (Flow)
Trasl. Rot. Trast. Rot, Trasl. Rot. Trasl. Rot.
Malaga d1 43.00% | 0.0321 | 86.60% 6.0156 23.20% | 0.1241 | 15.58% | (.0690
Malaga d2 47.37% | 0.0530 fail fail 23.35% 1 0.1088 | 21.44% | 0.0472
Malaga d2 -+ blur fait fail fail fail 35.14% 770.1262 | 24.06% | 0.0657

Table 3.3: Performances summary of alf methods on the Malaga experiments. The same considerations
of Table 3.2 apply. In this set of experiments we analysed only the end-to-end architecture, for the sake

of simplicity.
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Figure 3.6: Comparison between the four network architectures on KITTI d2 dataset. Again, the LS-VO
architecture outperforms the other, except for speed around 60Km/h.

v T

Figure 3.7: KITTI d2 trajectories: Trajectories computed on the sub-sampled sequences for all architec-
tures (d2 - 5Hz).
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Figure 3.9: Performances of the end-to-end architecture on blurred Malaga 42 sequences. The lack of

samples at high speed make the LS-VO network slightly overfit those samples, as shown in 3.9{c}, but in
ail other respects the behaviour is similar to Figure 3.8,
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3.5.3 Discussion

The experiments described in Section 3.5.3 on both datasets have been evaluated with KITTI devkit [60],
and the output plots have been reported in Figures 3.5, 3.6, 3.7, 3.8 and 3.9. In all Figures except 3.7, the
upper sub-plots, (a} and (b), represent the trausiational and rotational errors averaged on sub-sequences
of leagth 100m1 up to 800m. The lower plots represent the same errors, but averaged on vehicle speed
(Km/h). The horizontal axis limits for the lower plots, in Figures relative to d2 downsampled experiments
are different, since the sub-sampting is seen by the evaluation software as an increase in vehicle speed. In
Table 3.2 and 3.3 the total average translationa! and rotational ervors for all the experiments are reported.

Figure 3.5 summarises the performances of all methods on KETTI without frame downsampling. From
Figures 3.3(a) and 3.5(b) we observe that the BF-fed architectures outperform the Flownet-fed networks
by a good margin. This is expected, since BF OF fields have been tuned on the dataset to be vsable, while
Flownet has not been fine-tuned on KITTI sequences. In addition, the L.8-VO networks perform almost
always better than, or on a par with, the comesponding ST networks. When we consider Figures 3.5(c)
and 3.5(d). we observe that the increase in performance from ST to LS-VO appears to be slight, except in
the rotational errors for the Flownet architecture. However, the difference between the length errors and
the speed errors is coherent if we consider that the ertors are averaged. Therefore, the speed values that
are less represented in the dataset are probably the ones that are more difficuit 1o estimate, but at the same
time their effect on the general trajectory estimation is consequently less imporiant,

The geometrical methods do not work on frame pairs only, but perform local bundle adjustment and
eventually scale estimation. Even if the comparisor is not completely fair with respect to learned methods,
it is informative nonetheless. In particular we observe (see Figure 3.5) that the geometrical methods are
able 10 achieve top performances on angular estimation, because they work on full-resolution images
and because there is no scale error on angular rate. On the contrary, on average, they perform sensibly
worse than leamed methods for transfational errors. This is also expected, since geometrical methods
lack in scale estimation, while leamed methods are able to infer scale from appearance. Similar results
are obtained for the Malaga dataset. The complete set of experiments is availabie online {66].

When we consider the second type of experiment, we expect that the general performances of all the
architectures and methods should decrease, since the task is more challenging. At the same time, we are
interested in probing the robustness and generalization properties of the L§-VQ architectures over the 5T
ones. Figure 3.6 shows the KITTI results. From 3.6(a) and 3.6(b) we notice that, while ail the average
errors for each length increase with respect te the previous experiments, they increase much more for
the two ST variants. If we consider the errors depicted in Figures 3.6{c) and 1.6(d}, we observe that the
LS8-VO networks perform better than the ST ones, except on speed around 60Km/h, where they are on
par. This is understandable, since the networks have been trained on d1 and o3, that correspond to very
low and very high speeds, so the OF in between them are the less represented in the training set. However,
the most important consideration here is that the LS-VQ architectures show more robustiess to doimain
shifts. The plots of the performances on Malaga can be found ontine [66), and the same considerations
of the previous one apply.

The last experiment is on the downsampled and blurred image. On these datasets both VISO2-M and
ORBSLAM2.M fail to give any trajectory, due to the lack of keypoints, while Learned methods always
give reasonable results. The resules are shown in Figure 3.8 and 3.9 for the XITTT and the Malaga dataset,
respectively. In both KITTT and Malaga experiments we observe a huge improvement in performances of
LS-VO over ST-VO. Due 10 the difference in sample variety in Malaga with respect to KITTT, we observe
overfitting of the more complex network (L5-VO) over the less represented linear speeds (above 30Kmh),

This experiments demonstrate that the LS-VQ architecture is particularly apt to help end-to-end net-
works in extracting a robust OF representation. This is an important result, since this architecture can be
easily included in other end-to-end approaches, increasing the estimation performances by a good mar-
gin, but without significantly increasing the number of parameters for the estimation task, making it rmore
robust to overfitting, as mentionad in Section 3.4.2.

3.6 Conclusions

This work presented L3-VO, a novel network architecture for estimating monocular camera Ego-Motion.
The architecture is composed by two branches that jointly learn a latent space representation of the input
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OF field, and the camera motion estimate. The joint training allows for the learning of OF features that
take into account the underlying structure of a fower dimensional OF manifold. The proposed architecture
has been tested on the KITTI and Malzga datasets, with challenging alterations, in order to test the
robustness to domain variability in both appearance and OF dynamic range. Compared to the data-
driven architectures, LS-VO network outperformed the single branch network on most benchmarks, and
in the others performed at the same level. Compared to geometrical methods, the learned methods show
outstanding robustness to non-ideal conditions and reasonable performances, given that they work only on
a frame 1o frame estimation and on smailer input images, The rew architecture i¢ lean and easy to train
and shows good generalization performances. The results provided here are promising and encourage
further exploration of OF field latent space learning for the purpose of estimating camera Ego-Metion.
All the code, datasets and trained models are made available online [66]. _
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Chapter 4

Publications

1. Gabriele Castante and Thomas A, Ciarfuglia LS-VO: Learning Dense Optical Subspace for Ro-
bust Visual Odometry Estimation 2617 IEEE Robotics and Automation Letters (RA-L), under re-
view,

2. Silvia Cascianelli, Gabriele Costante, Thomas A. Ciarfuglia, Paclo Valigi and Mario L. Fravolini,
Fiull-GRU Natural Language Video Description for Service Robotics Applications to appear in 2018
{EEE Robotics and Automation Letters (RA-L).

3. Michele Mancini, Gabriele Costante, Paolo Valigi and Thomas A. Ciarfuglia J-MOD?: Joint
Moneocular Obstacle Detection and Depth Estimation 2017 IEEE Robotics and Automation Letters
(RA-L), under review.

4. Michele Mancini, Gabricle Costante, Pacto Valigi, Thomas A. Ciarfugiia, Jeffrey Delmerico and
Davide Scaramuzza Toward Domain Independence for Learming-Based Monocular Depth Estima-
tion 2017 IEEE Robotics and Automation Letters (RA-L), vol, 2, no. 3, pp. 1778-1785.
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Introduzione

Lo sviluppo di sistemi intelligenti dal punto di vista sia
accademico che industriale ha preso con decisione la direzione
dello sviluppo di algoritmi di percezione e collaborazione
avanzata basati sui dati (data driven). In particolare molta
aspettativa, non solo da parte dell’industria, ma anche della
societd pit allargata, € stata messa su metodi di apprendimento
automatico supervisionato. La grande disponibilita di dati in
svariati settori, o comunqgue la propensione a raccoglierli vista
I’enorme potenzialita di sfruttamento con algoritmi di
apprendimento automatico, hanno medellato anche il panorama
di ricerca in robotica degli ultimi due anni. In particolare I’enfasi
sul Deep Learning & cresciuta fino al punto di generare
specifiche sessioni a conferenza, o addirittura conferenze
autonome, con lo scopo di esplorare il potenziale che queste
tecniche hanno nella soluzione dei problemi aperti di
automazione e robotica.

Nel corso del 2015-16, quando ancora il Deep Learning era
confinato alla computer Vision e al Natural Language
Processing, abbiamo presentato un lavoro pionieristico di
Robotica mobile utilizzando queste tecniche. Questo lavoro &
stato accolto con entusiasmo, € staio candidato a miglior articolo
di visione di ICRA 2016 e, soprattutto, ha iniziato un filone di
ricerca nuovo, che nel corso del 2016-17 e stato seguito da
diversi altri gruppi di ricerca internazionali.

Nel corso di questo anno si é perseguita ulteriormente guesta
linea di ricerca, espandendola sia in profondita che in ampiezza,
per lavorare con problemi pit olistici rispetto alla sola stima del
moto di un veicolo autonomo. Pertanto gli articoli prodotti
durante ’anno riguardano I’interazione dei robot con I’ambiente
in maniera pit ampia:

1. Monocular Depth Estimation: Notoriamente & possibile
stimare la struttura 3D di una scena utilizzando coppie di
immagini separate da una ceria distanza, utilizzando la
geometria epipolare. Tuttavia la qualita di questa stima
dipende dalla distanza che separa le due immagini
{baseline). In alcuni casi per¢ il peso di una stereocamera
é troppo oneroso per un robot (ad esempio nel casi di
Micro Aerial Vehicles — MAV). Per questo motivo
abbiamo proposto metodi di stima della profondita della
scena a partire da immagini monoculari al fine di



sviluppare algoritmi di pianificazione della traiettoria e
obstacle avoidance. Questa linea di ricerca ha prodotto
due lavori, entrambi pubblicati su rivista internazionale.
in particolare uno ha visto la collaborazione con un
gruppo di ricerca Svizzero leader nell’area di ricerca
sulla navigazione autonoma di MAV.

2. Un’altra linea di ricerca ha riguardato I’interazione dei
robot con le persone, in particolare la capacita di un robot
di comprendere una scena vista con la telecamera e
tradurla in frasi in linguaggio naturale di senso compiuto.
Questo ha prodotto un lavoro recente a rivista. E
auspicabile che questa linea di ricerca cresca
ulteriormente nei prossimi mesi.

3. Un terzo settore, limitrofo, ¢ emerso dall’applicazione
delle tecniche di depth estimation monoculari a immagini
radar satellitari. Sebbene queste siano diverse da quelle
ottiche, esistono alcune analogie che ci hanno convinto
che fosse possibile utilizzare le stesse tecniche utilizzate
in robotica per la stima dei Digital Elevation Models a
partire da una immagine radar. Questo ha prodotto un
lavoro esplorativo che wverra presentato tra poche
settimane in una conferenza internazionale.

Oltre al lavoro di ricerca in senso stretto, quest’anno € stato
dedicato agli altrettantc importanti impegni di didattica,
orientamento e found raising. Questi tre ambiti risultano molto
onerosi in termini di tempo, ma nel medio e lungo periocdo, sono
quelli che di pit garantiscono la crescita dell’istituzione
universitaria e del territorio che essa serve.

11 piano del prossimo anno vede un ulteriore sviluppo in termini
di visibilita internazionale in merito alla ricerca nel setiore della
Computer Vision applicata alla robotica e all’intelligenza
artificiale, possibilmente attivando muove collaborazioni con
gruppi di oltre confine.

Di seguito sono allegati i lavori prodotti, pubblicati o sottomessi
durante I’anno in esame, che costituiscono il corpo di questa
relazione.
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HIGHLIGHTS

A training-free appearance and viewpoint robust Place Recognition system is proposed.
The method uses CNN features and preserves scene structure via a covistbility graph.

A novel appreach for syathesizing virtual views of the envirorment is proposed,
Virtual views are particularly vseful to face critical situations of viewpoint change,

ARTICLE INFD ABSTRACT
Article history: Visual Self-Jocalization in unknown environments is a crucial capahility for an autanemous robot. Rea life
Received 26 August 2016 scenarios often present critical chatlenges for autonomous vision-based lecalization, such as robustaess
Available online & March 2017 to viewpoint and appearance changes. To address these issues. this papes propases a novel strategy
that models the visual scene by preserving its geometric and semantic structure and, at the same time,
Keywords; X : - . ; s X
Place recognition improves appearance invariance through a rol:?ust \flsual representation. Our method relies on !ngh
Loap closing Ievel visuat landmarks consisting of appearance invariant descriptors that are extracted by & pre-trained
CNEN feamites Convolutional Neurai Network {CNN) on the basis of image patches. In addition, during the exploration,
Graph the landmarks are organized by building an incremental covisibility graph that. at query time, isexploited
Semantic to retrieve candidate matching locations improving the robustness in terms of viewpoint invariance. in
this respect, through the covisibilicy graph, the algorithm finds, more effectively, location similarities by
exploiling the structure of the scene that, in turn, allows the construction of virtual lecations i.e.. arificially
augmented views from a real location that are useful to enhance the Joop closure ability of the robet. The
proposed appreach has been deeply analysed and tested in different challenging scenarios taken from
public datasets. The approach has also been compared with a state-of-the-art visual navigation algorithm,
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1. Introduction can lead to a critical failure of most state-of-the-art systems. As

a consequence, place recognition capabilities are crucial functions
In the last decade, vision-based navigation systems have for foop closure detection and to increase the robustness of the

achieved impressive results 1,2], considerably extending the ap. ~ overall estimation process. N )
plication area of many robotic platforms. However., it is well known Most of the existing place recognition strategies have been
that, during Jong term operations, the localization performance developed considering image sequences characterized by smail

may drop due to the drift of the estimatien procedures, which ViewpoInt and lighting‘ variations {3-3 ar'td_, within these sce-
narios, the results obtained are very promising. However, these

simplified conditions do not bold in real life autonomous ex-
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Fig. 1. Graph of Covisible CNN-Extracted features for semé-semantic visual Place
Recognition: exemplar created graph.

with different orientations can change the scene viewpoint, which
may alter significantly the relative position of objects in the scene,

Place recognition algorithms that exploit Jow jevel visual fea-
tures 3,4] are typically very sensitive to strong image variations
and, therefore, they do not provide good place recognition per-
formance, Recent works [6-3] have shown that high level visual
feamires, i.e., semantic cues, provide a more robast representation
of the scene since they also encode information about object cate-
gories and their mutual relations. In fact, semantic features provide
a better characrerization of the scene, which may facilitate the
place recognition process by an autonomous robot, However, the
derection of different objects may not be enough to unequivecally
identify a specific place (eg. cars and buildings could be not
discriminative in an urban environment}, In these scenarios, the
capability to discriminate between different spatial configurations
and different views of the objects is crucial.

Motivated by the previous considerations, we have worked out
a vision-based place recognition system that relies on a graph of
semantic visual objects (see Fig. 1, where it is shown the graph
produced by our algerithm using 623 images taken from the [DOL
dum_sunny3 + dum_cloudyt dataset [9]) that is built incremen-
tally during navigation. in order to improve the robustness with
respect to appearance changes, the graph was built in such a way
that the nodes collect similar image patches that are represented
by high level descriptors extracted by the inner convelutional
layer of a public CNN trained specifically for ohject recogrition
purposes { 10].

Furthermare, to handle viewpoint changes ard to gase the place
recognition task, the edges of the graph are used to encode covisi-
bility infarmatton, that is edges are created to connect the objects
that have been observed together from the same point of view, The
result is a covisibility graph [11,12] that takes into account mutual
object arrangements. In addition, the graph structure is exploited
to build virtual locations 1 13] in a new strategy that relies only on
graph algebraic properties. Virtual locations represent synthetic
views of the scene that are not present in the image database. As
a consequence, the algorithm has the potential ability to recognize
places even in the presence of strong viewpaint changes.

To summarize, the main contributions of this work are:

» The employment of semi-semantic features extracted by 4
pre~trained CNN on the basis of image patches, which are
robust to appearance changes, in a covisibility graph-based
madel of the environment, which enhances the viewpeint
rabustness of the place recognition zigorithm.

» The development of a procedure for the construction of ar-
tificial virtuai locations via a novel parameter-free approach
that exploits the covisibility graph properties to face critical
loop closure detection situations.

s The extension of the work in [ 4], with a different strategy
for virtual location construction and with a deeper exper-
imentat analysis on the performance of each part of the
proposed algorithm, which was evaluated on an extended
nummber of datasets with respect to the work { 13].

To the best of our knowledge, apart from [ 14}, there are no previous
applications that use high leve! features extracted by a CNN as
nodes of 2 graph to build an incremental model of the enviranment
during the exploration, Another important specific nevelty of this
study is the development of a parameter-free procedure for infer-
ring artificial views on the basis of the developed graph model.

The remainder of this paper is organized as foliows. In Section 2,
related work is discussed, while in Section 3 the graph constiuc-
tion procedure is described, Section 4 describes the pipeline of
the algorithm and Section 5 provides a detailed description of
the experimental results. Conclusion and futore development are
discussed in Section 6.

2. Related work

Place recognition and loop closure detection are strictly refated
probiems that are particelarly important for autonemous robotic
navigation in unknown environments. The main challenges for ay-
tonomous visual navigation in real Jife scenarios are viewpoint and
appearance changes. A short categorization of the main research
directions is provided below.

2.1. Appearance invariant approaches

The appearance change issue is typically faced via change re-
moval methods, as in [15], via change prediction, as in Neubert
et al, in [ 1G], or by computing visual descriptors that exhibit in-
variznce properties to appearance, as in [ 17} where the authors
trained a multi-layer perceptron model te learn an appearance
invariant set of descriptors. Among appearance invariant descrip-
tors, features obtained fromn the inner layers of CNNs (that were
pre-trained for object recognition tasks) have shown their effec-
tiveness, as shown for instance in [18)]. In particular, the authors
in [15] and [19] were able 10 reduce significantly the effects of
daily shadow and sunlight by transforming images in an illu~
mination invariant colour space. The authors in {16] exploited
the repeatability of the seaspnal appearance changes, and built a
super-pixel dictionary specific for each season and opportunely
transtated images captured in differeny seasons before matching.
Authors in [317] studied the focal changes of appearance of image
patches subject to variation in lighting conditions and trained
a muiti-layer perceptron model and a convolutional muliti-layer
perceprron made! for learning an appearance invariant feature
descriptor. In [18,20}] the authors extensively studied the appear-
ance and viewpoint invariance properties of the outputs produced
by different layers of pre-trained convohutional neural networks,
specifically designed for objecr recognition and scene categoriza-
tion. They demonstrated that the inner convotutionat layer outputs
provide robust appearance invariant features, while higher fuily
connected layers provide viewpaing robust features.

2.2. Viewpoint invartant approaches
Viewpoint changes are usnaily more critical than appearance

changes. Some successful Simultaneous Navigation And Mapping
{SLAM) systems exploit, as loop closure detection modules, Place
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Recognition methads that are based on local invariant features.
Some examples are FAB-MAP [3], which is based on SURF {21}
features and ORB-SLAM [22], which is based on ORB {23] fea-
tures, However, for visual Place Recognition alporithms view-
point change is still a critical issue, Viewpoint invariance is gen-
erally addressed in an application dependent fashion, either by
applying image rectification methods in case of mild viewpoint
changes [24], or by considering the specific type of changes in the
viewpoint that wiil be encountered while performing a specific
task eg, [25-27]. Tn particufar, the authors in {24] estimate and
normalize affine parameteyrs of local transformations in the images,
but their approach is applicable only to objects with regular strue-
ture, as e.g., buildings. Seme heuristics or solutions designed for
specific enviconments are applied to perform visual Place Recog-
nition in case of specific severe viewpoint changes, such as in case
of lane traversal in [25), panoramic visien in [26] or air-ground
viewpoint change in [27].

2.3. Appearance and viewpoint invariant approaches

Scenanios characterized both by viewpoint and appearance
changes are particularly challenging for the loop closure detec-
tion task. Promising sctutions usually rely on CNNs specificably
designed for place recognition {28} or on features extracted {rom
a CNN designed for object recognition [G], or viewpeint synthe-
sis 129, or exploiting robust sequence matching techtiques [25].

24, Graph-based approaches

Modelling the environment as a graph requires the definition of
what “anode is” and of a criterion that defines the node connection
mechanism. In order to preserve geometric information. in{7.8] 2
geometric graph based on the distance between centres of 3D point
clouds or 2D patches araund 2 landmark was proposed. A recent
work by Peppereil et al. {30] focused on maze urban environments
and used roads as directed edges connecting intersections to fa-
cilitate sequence maiching in place recognition. Another general
criterion for huilding graphs of the environment, while dealing
with bidimensional images, is based on the covisibility of the
landmarks, le., an edge {5 created between landmarks if they are
present in the same image. This approach was proposed in [13]
and is also adopred in this work, with the important difference
that, instead of using hand-crafted descriptors, we use features
extracted by a convolutional layer of a pre-trained CNN that re-
ceives as input unprocessed image patches. Using a graph to madel
the environment allows the integration of additional information
from other sources, siech as robots or other intelligent systems.
Hence, it provides a framework that can be easily integrated with
netwaork information, and with other environment specific visuat
object galleries following a transfer learning paradigm [31].

3. Incremental covisihility graph construction

In this study we assume that the autonomous robot does not
have at its disposal any prior information on the environment,
that is, the visua) exploration starts from scrarch. As a new image
is captured, patches containing objects are extracted and then
processed by a CNN, The outputs of an inner fayer of the CNN,
along with the dimensions of the patches, are used to build a
graph-based representation of the environment and to enrich the
collection of landmarks encountered as the exploration progresses.
In Fig. 2 a block diagram of the operations performed in this
knowledge acquisition phase is shown; betow, the buflding blocks
of this scheme are described in detail.
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Fig. 2. Schematic representation of the visual inforimartion processing blocks used
during the exploration, When a new image i5 acquired, the Edge Boxes algorithm
{dark red block} extracts a pre-defined number of image parches, These are fed
to AlexNer (yellaw black), from which the output of conv3 fayer is retained. The
dimensionality ef this output vector is reduced via Gaussian Random Projection
{cyan block). Injormation about each patch enriches the incremental database of
images {magema blork) and extends the covisibility graph by mapping landmarks
in existing or new nodes (green block), {For interpsetation of the references 1o
celautin this figure legend, the readey is refermed to the web version of this articke.)

3.1, Semi-semantic landmarks extraction

The model of the environment is here obtained using high level
visual landmarks extracted from the scene acquiced by the robot
during navigation. For each new image the landmarks are derived
from trhe processing of image patches that are likely to contain
a generic object, In this work the number of extracted patches
per frame is constant and fixed at 50. To obtain these patches we
apply the algorithm by Zitaick et al. proposed in [32], named Edge
Boxes, which efficiently detects a bounding box around a patch
{of variable size and dimensions} that contains a high number
of internal contours compared o the number of contours exiting
from the box. This fact indicates the presence of an intelligible
object in the enclosed patch. The visual content of these patches,
however, is not associated with an object label’ ie., the Edge Boxes
algorithm does not provide any object categorization for the object
within the patches, For this reason our method can be considered
a “semi-semantic” approach.

The 2D patches extracted by the Edge Boxes algorithm are
directly processed by a pre-trained CNN and the cutput produced
by an inner layer of the CNN s used as descriptor vector of the
patch.

The strategy of using, as descriptors, the outputs provided by
inner layers of a pre-trained CNN was proposed by some authors
as in [18,33,34] thanks to the high representarional power of deep
nefs.

In this stidy, we use the pre-trained AlexNet CNN {10, that
is a weil-known CNN used for Object Recognition, and select the
ougput of the conv3 layer as descriptor vector, This cheice is mainly
motivated by the study reported in [18], where the output de-
scriptors provided by the different [ayers of some CNNs for Object
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Recognition and Place Recognition were compared in order to find
the best descriptor vector for the Place Recognition task, In par-
ticular, the authors of [ 18] demonstrated that in case of viewpoint
changes, AlexNet has a slight performance improvement compared
to CNNs trained on location-based images if considering the whole
images. The same authors in {6} demonstrated that using region-
based features rather than whole-image features provides a benefit
in terms of viewpoint robustness. Since our region-hased features
are extracted on the basis of image patches confaining ebjects, we
decide to use AlexNet as feature extractor.

AlexNet warks on fixed size images, while Edge Boxes produces
patches with arbitrary dimensions, therefore we resize them in
order to fit the AlexNet input dimensions. In order not to lose
the originat size infarmation, the height and width of the patch
are considered as additional descriptors, together with the conv3
output vector.

The conv3 layer output is a vector of 13 x 13 5 384 = 64896
elements that provides a redundant representation of the input
image which is useful to better discriminate between classes of
objects. Considering that in the robotic exploration it is important
to limit the real time compurational load we decide to reduce the
dimensionality of conv3 output by appiying the Gaussian Ran-
dom Projection method |35} obtaining a reduced vector of iength
2048, This reduction does not significantly deteriorate matching
performance, since Gaussian Randem Projection provides a good
approximation of radial metrics that are typically used to measure
the similarity between vectors {as the Euclidean distance or the
cosine similarity). The choice of the size for the reduced dimension
of the conv3 output has been made considering both the results of
the study in [5] and additional parametric studies that were carried
out on the Gardens Point day-left and day-right dataset | 181,

The Fdpe Boxes parches, described by the reduced AlexNet
conv3 output p, and their widtl w, and height #; (e, by triples
{Pg, g, By} ). constitute the semi-semantic landmarks that are used
as basic compenenis of the graph-based representation of the
environment.

3.2, Craph nodes and edges

The characterization of a graph requires the definition of its
nodes and edges. Inspired by the work of Sturram et al. [13], we
butild a covisibility graph that models the environment as a struc-
tured cotlection of visual landmarks, acquired sequentially during
the environment exploration.

In particalar, the nodes of our graph are built an the basis of
the semi-semantic landmarks (described in Section 3.1} using the
procedure described in details in Section 3.3,

Covisibility information is modelled by connecting the nodes
betonging 1o the same image by an unweighted edge, i.e., nodes
observed from the same point of view are connected. Landmarks in
the same image are therefore fully connected, forming a complate
sutbgraph for that image.

This node connection policy encodes proximity relations among
patches {and their enclosed objects). but it is not strictly related to
any metric distance information, that is objects that are metrically
distant may be connected in the covisibility graph and metricaily
close objects (because of visual occlusions) can be not connected.
Hence, our method does not rely on the metric position of the
patches but uses only visual information.

3.3. Mapping landmarks into nodes

in the previous section we described how we build the covisi-
hitity subgraph of a new acquired image during the exploration.

Now, in order to incrementafly build the graph of the whole
environment, we need to specify how to connect each new sub-
graph to the current graph. This is carried out by mapping the

{b}

Fig. 3. Incremental covisibility graph constiuction during the environment expio-
ration. Examples of Edge Soxes landmarks estracted from images attime k- 1(left}
ang #t time & (right} respectively ane shown in 22, Refarive landmark covisibility
subgraphs of images visible at time &k — 1 {left) and at time & {right} respertively
are showsn in 3b: landimarks acquired in the same inage are connected in a dense
graph. Landimark covisibility whole graph at fime & — 1 {left) and & time k {right}
respectively are shown in 2oz similar landmarks are mapped én the same rede, while
different landmarks produces new nodes,

iandmarks extracted from 2 new image in nodes of the graph. For
the first image (ie., at the beginning of the exploration}, 2 node
is created for each of the extracted landmarks. For the fullowing
images, new nodes are added only for new landmarks, while the
landmarks having small distance from existing nodes are con-
sidered as “already seen lapdmarks™ and are therefore mapped
in the best matching existing node. An illustration of the graph
building process is shown in Fig. 3 while in  Fg. 4 we report
an axamptle of nodes that are generated by our algerithm on the
Gardens Point day-left and day-right dataset [ {d] and the visual
patches contained in these nodes.

In this study the similarity between landmarks is measured
using the scalar cosine distance dij between the feature vector
g Of the ith landmark in the current image and the one it is
most similar to, p, ; taken among all the landmarks in the previous
images.

To speed up the search for the most similar landmark, we ex-
ploit the KD-Tree algorithm proposed in {36} This algorithm works
oy with distance metrics that are component-wise additive and
monotonically increasing with components addition, as in the case
of the Euclidean distance. Cosine similarity is more suitable than
Euclidean distance for high dimensional data, but dees not ex-
hibit the characteristics requested by the KD-Tree algorithm, This
technical prablem is overcome by first calculating the Euclidean
distance between l;-normalized feature vectors and then applying
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Fig. 4. Landmarks belonging to some sample nodes: different nodes can contain
scaled versions of the same landmark {e.g, nodes A, B and C), the same nede can
contain a sinal number of different outlier patches (2g, nodes F and |} and in the
same node Lhere can also be clustess of patches, smoothly similar each other.

the following transformation:

drj =1- dElrc[idmn.l} {1)
Z

where dgyctiaron.ij 15 the Euclidean distance and dj; is the scalarcosine

distance between the landmarks py, in the current image and p, ;

in the previous images.

For each most similar pair of landmarks we also calculate the
“dissimilarity” measure of the geometric shape of their bounding
boxes s5. The definition of s; is raken from [G]:

qu'; — iy J'E

1 g, — fic gl
I exp = . 2
5 p[z (maX{wqi.ch} + TTIX [hq_;,thl)} (2)
Values of 5; that are close to 1 indicate that bounding boxes are
similar, while larger values indicates differences in their area and
shape.
The overall similarity between landmarks in the current image
and the most similar landmarks in the previous images is then
compuged as:

P,j wr ] — d@' * 5jf (3}

Values of Py that are close to 1 indicate that the two consid-
ered landmarks have both very similar shape and conv3 feature
descripror, while smali values indicate a difference that can be
due 10 both shape and conv3 features; negative values indicate 2
relevant difference in the shape of the patches. tsing the shape
dissimilarity coefficient s as a multiplicative factor enhances the
cosine distance dy between the conv3 features, This allows the
information on the shape of patches, that is lost {as explained in
Section 2.1) because of the resizing of the parches that is requested
to use the AlexMet CNN, to be taken into account.

Finally, landmarks are considered to be “the same iandmark
(and therefore mapped in the same node of the graph) when the
overal similarity Py is larger than a user defined thresheld. The
higher this threshold is, the more similar are the landmarks con-
tained in the same node. However, the algorithm becomes slower
because of the fast growth of the whole covisibility graph, while the
overall recognition performances are not significantly improved.

"

It is important to note that 2 new image produces at most as
many new nodes as the maximum number of patches extracted
by the Edge Boxes algorithm (50 in this study) since very similar
{overiapping) patches are mapped in a unigue fode,

The analysis of Fig. 4 highlights some important characteristics
of the nodes that are built with the above procedure. Specificaily,
different nodes can include scated versions of the same landmarks
feg, nodes A, B and C): the same node can include some outlier
patches {e.g, npdes F and J) because of the resizing needed to
feed AlexNet: in the same node there can be clusters of patches,
similar to each other. since we associate new landmarks to a
node computing the similarity with the whole set of landmarks
associated to that node and not simply with a “centroid” landmark
for that node {e.g., node G).

3.4. Graph represeniation

I practice, the computed covisibility graph is encoded and
managed using a sparse cligue matrix, Meggpe, WHose rOWS repre-
sent nodes and whose colurnns represent image indices, so that a
1 in Meguebp, £} means that the node p is present in the image f.

The graph growth due to the allocation of a new node is imple-
mented by the following matrix update:

i1
1 11
Miquef,_, = o Muiiguely, = 11 {4
: S
A

where in {47 2 new column is added for the curreat image, which
has 1 s in the existing rows corresponding to aiready observed
landmarks. In addition, when a landmark is assumed to be new,
then a new row is allocated, having a 1 in the column associated to
the last image, where the landmark was ohserved (allocared) the
first Bme.

The representation via a sparse matrix also provides an efficient
indexing for the image dataset. In fact, considering the definition of
the Mefigqe matrix, we kaow that the rows that are associated with
a specific landmark contain ones in positions corcesponding to the
indices of images where that landmark has been observed, and,
conversely, for each image we can know which landmarks belong
to that image. This information can be obtained in constant time.

Itis instructive to look at the 21 geametry of the clique matrix.
For this purpnse we generate the clique matrix framthe City Centre
benchimark dataset {3}, that is characterized by a trajectory rhat is
fraversed twice. in this representation, zeros are white dots, while
ones are black dots, The corresponding clique matrix (shown in
Fix. 5) presents a repeating nodes patters in the image indices
corresponding to images collected during the twotraversals of the
same pach. This indicates a loop, since the algorithm recognizes
many landmarks allocated during the first traversal, along with a
few new nodes that are specific of the second travessal,

It is also observed that, due to the presence of already acquired
landmarks, the Mg, matrix has a growth rate slower than 30 new
nodes per image: for example, in the City Centre Dataset, which
contains 1237 fmages, our algorithm creates 8326 nodes instead
of 50 x 1237 = 416300 nodes. It is expected that the contin-
uous exploration of the same environment will tend to decrease
the altocation rate of new nodes over time. This aspect is very
important for robotic applications because, for a space constrained
environment, we expect a sort of saturarion effect to slow down
the graph growing precess, thus limiting memory consumption of
our system.
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Fig. 5. Trajectory and Clique matrix Maig. relative fo the City Centre Datases, This
dataset prasents & circular trajectory sraversed Dwe times starming form tmage 152
0 image 874 and from image 675 to image 1220 and ifs clique matrix presents a
repeating nodes patiern in the corresponding image indices, along with few new
nodes that are specific of the second traversal, The aliocation rate of new nodes is
inferior in the second rraversal with respect to the first traversal becasuse the robot
sees many landmarks belonging to already allocated nodes and oty 3 small number
of new nodes is altocated.

4. Place recognition algorithm

In this section the proposed place recognition algorithm whose
block diagram is shown in Fig. G is described. The purpose of this
algorithim is to find possible matchings between the curreat image
{thatin this phase fs calted "query inage™}and a subset of the most
nromising images in the set of images (called "image collection™)
that has been acquired previously {also ramed as “candidate im-
ages™). In particuiar, the place recognition algorithm is based on
the visual modelling of the environment described in Section 3. The
matrching score between images is computed taking into account
two aspects: the mean similarity of landmarks tn the query and
candidate images and the simélarity befween images subgraphs. In
addition, in order to facilitate the detection of possible loop dlo-
sures in critical points along the path, 2 mechanism that produces
artificial “enlarged views" {also named “virtual Jocations”) on the
basis of the candidate images is proposed.

4.1. Candidates retrieval

In this section the first block of the system which expioits
the covisibility graph is described. Considering a query image, we
seject, from the whole image coilection only a subset of images to
be further analysed for the detection of possible loop clasures. In
particular we retrieve the images that share at least a minimum
number of nodes {this number is a free design parameter) with
the query image. The sparseness of the clique matrix allows us
to efficiently identify {in constant time} the candidate images that
fulfil this retrieval criterion,

In this work, the retrieval criterion is "unselective™ and atl
the images that share at least one node with the query one are
retrieved, It should be noted that & more selective criterion could
be used, improving the speed and precision of the entire algorithm.
in fact, a more selective criterion automatically excludes from the
analysis many true negative matching images, so that the retrieved
images are only those sbaring a large number of landmarks with
the query image, thus the loop closure detection system would
prove to be more precise. However, a selective criterion also has
the porential drawback of inducing a pessibie recall drap {i.e. the
fraction of relevant images that are effectively considered) due
to the exclusion of many true positive matchings along with the
true negative matchings. This side effect is more relevant with the
increase in the minimum number of shared nodes requested by
the aigorithm. This trend is clearly confirmed in Tabie 1, which
shows the percentage of true positive and rrue negative matching
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Fig. 6. Schematic representation of the proposed Place Recognition system. The
covisibility graph is exploited fo retrieve the most refevant candidate images
{orange biock). For each one of the retsieved images, it is catcubated the Landmarks
similarity score (light green block) and the subgraph matching score {red block),
Thase values are roultiplied and used as baseline score in the process of virtual
lecation construction { biue block). Using this latter biock the final similarity score
for each candidate image is assessed. {For interprotation of the references so coleur
in this figare legend, the reader is referred 1o the web versien of this arcicle.)

images that have been excluded from analysis due to the retrieval
criterion in the four datasets that are used for the experiments
{described in Section 5.1). Note that the New College and City
Centre Dataset contain images from different envirenments (such
as gardens, archways, squares, alleys and inner urban areas), fe,
tiigh “intra dataset” diversity, Thus, even a loose retrieval crite-
rjon is favourable in terms of a priori excluded true negatives.
Conversely, the Malaga parking 6L dataset contains images that
are more similar to each other. Thus, the positive effect, in terms
of a priori exciuded true negatives, of not strict setrieval ¢rite-
ria is less evident. Fipally, unlike the other datasets, the IDOL
dum_sunny3+dum_cloudy1 dataset was collected in an indoor
environment and exhibits high sensitivity to the retrieval criterion.
In particular, it is observed that the negative effects of strict criteria
in terms of a prioci excluded true positives are visible also for
less strict criteria that, conversely, do not severely affect ouidoor
datasets.

Finally, the choice of a reasonable minipmem number of shared
nodes is application dependent; for example, for a localization and
mapping task, precision is ceitical and a strict retrieval criterion
{e.g., minimum number of shared nodes equal 1o 10) is advisable.

4.2, Unstructured similarity between images

in this section we analyse the block that computes the similarity
between landmarks to establish whether a candidate image from
the image collection matches with the current query irnage. This
block is based on the aigorithm proposed by Sunderhauf et al. {6}
and does not consider the covisibility information.
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Taide 1

Percentage of frue positive (TP} and true negative {TN) matching images 2 priosi excluded from marching due to the retrieval criterion (Ministurn Number of Shared Nodes)
in the four rested public datasets. A sirict criterion causes the exclusion of many True Negatives, thus augimenting the precision, but it 2iso causes rhe exclusion of many

True Positives. thus reducing appreciably the recall.

Minimusa rumber of shared nodes  New college City canire IB0L Malaga parking 6L
dura_sunny3+dum_cioodyl
Excluded TP Excloded TN Excluded TP Excluded TN Excluded TP Excluded TN Excluded TP Excluded TH
i 0.10% 44 50% GA8% B53x 0.00% 0.18% B.00% 0143
5 12.23% 72.50% 13.10% 92.36% F492%% 03.14% 4518 22.55%
10 44.33% 34,37% 43739% v bt 9167% 9 10% 50.93% §553%
20 00, 29% 96 95% 86.13% WAVE 98.34% 99.85% 84.38% 0.05%

The similarity measure between the guery and candidate im.
ages is derived as a function of the landmarks’ feature vectors and
of the shape parameters of their bounding box. The algorithm com-
putes a similarity score, Py (via £g. {31), between each landmark in
the query image and the most simitar landmark in the candidate
image under investigation. The matching score is then assigned
to a candidate image as the mean value of individual scores of its
landmarks:

- 1
o . 5
5¢.6, N %:PIJ (5)

Note that, since the considered landmarks in this phase are those
of the query and a candidate ifnage, the simitarity score between 4
pair of landmarks can be smaller than the threshold that has been
fixed in Section 3.3 to map them in the same node of the graph.
This is reasonable because in this phase the similarity between
images is cornputed on the basis of landmarks appearance, without
exploiting the covisibility graph infarmation.

4.3. Subgraph matching

The purpose of the Subgraph Matching block is to exploit the
information embedded in the cavisibility graph in order to refine
the previously computed matching scare Sq c,. which is based
only on similarity between landmarks {Section 4.2). fn particular,
we exploit the graph Adjacency matrix to take into account the
neighbouring information of the nodes in each image subgraph.
The Adjacency matrix is obtained on the basis of the graph clique
matrix Muique.

As the exploration proceeds, the covisibility graph grows, thas,
except in the initial phase, our system deals with a large cligue
matrix, In order to manage efficiently the large dimensionality, we
implement an ad-hoc procedure (see the pseudo code in: Algo-
rithm 1) that exploits the definition of the Adjacency matrix for
its calculation, thus limiting significantly the computational cost
needed to obtain it (ie. O(N?), that is further reduced to O{N)
thanks to the sparsity of the clique matrix).

Algorithm 1 Obtain Adjacency matrix

hnput : Maigue

Quiput : A

A Oy

forx < 1toN do
b isolate Mymye columns having 1 in row index x
x_columms «— Meaigue|x=1.:]
o set to 0 x_colunms element in row index x
x_columins(x) «— 0
e collect indices of node x's neighbowrs
x_neighbottrs < indexOf{x_caitumns = 1)
Alx, x_neighbours] + 1

end for

Note that during the graph construction the nodes maintain
their order {that is the order in which they have been allocated

during the exploration as explained in Section 3.4}, thus the row
and column indices of the Adjacency matrix are the same for
the query and candidate images subgraphs. This implies that the
subgraphs are aligned [37} with the great advantage that they
¢an be directly compared by means of their Adjacency matrices.
The simifarity between the candidate and the guery Adjacency
matrices is measured by means of the normalized cross correlation

as follows:
- n
}—«r‘jﬁg ’ A:‘.i

Yoo, = o <
AR Ty

where in {5} Ag and A:}” are the Adjacency matrix entries relative
to landmarks p; and p; in the subgraphs of query location ¢ and
candidate location C;, respectively.

Then we maintain only normalized cross-correlation vakies
that are lower than a defined fraction o {set at 0.1 in this study) of
the normalized cross-correlation berween the query image and the
previous ane ..y, which is reasonably the most correlated with
the cUrrent query image, as;

(6

}‘JQ 'cll

N if o -
Yoo = I1 Yoo < HON T (7)

if Yok = o Vo

Note that o can agsume any value between 0 and 1. The choice of
setting @ = (.1 is guided by the consideration that a small vaiue
implies a smail cross-correlation between the Adjacency matrices
of the query and candidate images. In fact, the obtained j5,c, value
is used to weight the similarity score 5q ¢, (5! of each candidate
lacation, thus filtering out matching scares of candidate location
whose fandmark arrangement is too different from that of the
query location.

The resulting matching score between images is thus computed
as follows:

Socn = Po.s - 0.0 (8

4.4. Virtua! locations

Each new acquired guery image is compared fo a subser of
images from the Image Collection which have been reteieved as
described in Section 4.1, in this block each candidate image is
“virrually” expanded using the visual information of neighbouring
images.

This can be very useful in situations where viewpoint changes
are criticat, When 2 place is revisited it is reasonable to assume
that the viewpoint is different, this especially in proximity of
90° carners or in stretches traversed with lateral displacement, In
such a situation some detected jandmarks can have a very different
retative position, others can be occluded and some new ones can
enter the current view. Thus, the place recognition algerithm can
benefit from the generation of virtual locations in order to com-
pensate viewpoint changes,

A possible strategy to build virtual locations is to temporar-
ily add nodes {tandmarks) to the current candidate image under
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investigation. Previous works, such as]12,13] and {14}, obtained
virtual locations by “merging” subgraphs of candidate images that
share a user-defined number of nodes. i this work, we remove this
parameter and propose a sirategy based on the spectral properties
of the covisibility graph. In particular, the nodes to be added te the
current candidate image are seiected following an agglomerative
chustering approach | 351. The agglomerative clustering algorithms
srart from a seed subgraph and iteratively include nodes among
its neighbours {i.e., nodes that are connected at least to one node
that already belongs to the seed). In this respect, the subgraph of
the current candidate image is used as seed and its neighbourhond
contains nodes belonging to other candidate images. Our node se-
lection criterion is based on the graph connectivity metrics, which
is computed exploiting the algebraic graph theory as explained
below.

Considering the Adjacency matrix A of the graph, its Degree
matrix D can be immediately derived. This is a diagonal matrix
with as many rows and columns as the number of podes and, for
an undirected graph {such as our covisibility graph} [ contains the
number of each node's neighbours in the corresponding diagonai
positions, that is:

N
Dy=) Ay (9
i=t

where N is the total number of nodes in the graph.
On the basis of the Adjacency matrix and of the Degree matrix
it is possible to compute the Laplacian matrix L of the graph as:

L=D~A, {10}

By construction L is singular, symmetric and positive semidefinite
in case of 2 undirected graph. Eigen-decomposition of the Laplacian
matrix induces a clustering of the nodes of the graph (in particular
it makes it possible t0 identify a specific rumber of groups of nodes
depending on the eigenvector we select for clustering purpose).

The N ordered eigenvatues of L are defined as &y = A3 =

- < Ay. The sum of each row and column of L is zero, thus, by
constoscrion, the eigenvalue Xy is equal to zero and its associated
eigenvectorisuy = 1, infactluy = &

In this study we exploit the second eigenvector, Uy, ass0Ci-
ated to eigenvalue X , since it provides a measure of the graph
connectivity as explained in 39,40} For instance, Fig. 7 shows
the components of the eigenvector v, mapped on the nodes of a
sarapie covisibility graph computed on the first 20 images of the
City Centre Dataset. [t may be observed that the components of uy
vary smoothly from the simallest ones (in blue) to the largest ones
(in red), thus inducing a natura! ranking of the nodes of the graph.

Based or the previous considerations, each candidate image can
be expanded by adding nodes, ore by one, as a function of simi-
larity measure provided by the u; component value. This strategy
reflects the fact that the node to be added is the most connected to
those actually contained in the candidate image subgraph.

After the addition of a node to the candidate seed subgraph,
the matching score of the expanded candidate location is recalcu-
lated. The expansion process is stopped if the similarity measure
between guery and candidate images decreases. The process is
also stopped if a predefined maximum number of nodes is added
tc the seed location (we set this imit to 50% of the numbee of
Edge Boxes extracted, which Is equals to 25 in this work). The role
af this additional stopping criterion is twofold. First, it hmits the
time complexity of the virtval location construction procedure and
second, it prevents false positive matches. [n fact, if the expansion
were uncontrolled, a candidate image would likely obtain 3 high
matching score because of the addition of many nodes not belong-
ing to its original subgraph, thus the matching score might prove

Fig. 7. Eigenvector Uy components associated to each node a subgraph of the City
Centre Dataser, rade of the {irst 20 images: note the inducted partition it two
subsats,

Algorithm 2 Obtain Virtual Location
Input : vz, Meigue, 5o ¢,
. €
Output : 55 ¢, Mo
SQ,fn = SQ-CN

Met e Maiguelt, Gl

> GF = expanded candidate

(-—t-
M:I?qur = Mc!iquell. Cn]
b & & temporaty expanded candidate
added «— 0

N,
while added < — do & Np == 50{n this stady
- coblect indices of nodes in seed subgraph
seed <« indexQf (M5, = 1)

. cliqie ,
o collect indices of nodes not in seed subgraph

N(seed) < indexOf (M, = 0)
& A(seed} = seed neighbourhood

e find the index of the best node to add to seed subgraph

best _neighbour « argmin { 3 {(uy[il — u;_{j}}?]
JeNseed) | lesend
o atd best_neighbour to the current seed subgraph
Mg‘iu,{best_neighbaur} -—1
calculate 5p ¢+
55 ¢, = 5q.¢r then
break
else . o
Mff?que Al Mcl"r'lquz
SaJ:n NS SQ‘E:
added + 1
end if
end while

misleading. The pseudo-code of the virtual location construction
process is reposted in cthe Algarithmo 2 table.

o have an idea of the positions where the virtual locations are
actually generated along the paths, in Fig. 8 we report the 2D GP3
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3 (d)

Eig 8. GPS positions of candidate images {red dots) that are used as seed for the
construction of 3 virtual location on the four tested datasets. namely the City Centre
dataset i, the New College dataset 5o, the Malaga Parking 6L dasaset Bv and rhe
1DOL dum_sunny3 + durn_cloudy? dataset . Virtuat focations are created near
curves, 93¢ angles and streiches traversed in opposite directions or ir cases of a
severe lateral displacement. {For interpretation of the references to colour in this
figure legend. the reader is referred to the web version of this article.)

trajectories for the four test datasets where the red dots represent
the GPS coordinates of the candidate images that were used as
seeds for virtual locations. it can be observed that virtual focations
are created near curves, 99° angles and stretches traversed in
opposite directions or in ases of significant Jateral displacement,
Those points are particuiarly critical in terms of viewpoint changes,
since even smal! variations in the trajectory (and thus, in the
viewpoint} may cause a very different arrangement of the visible
landmarks in the acquired scene, thus making the loop closure
detection particularly challenging.

4.4.1, Compufational compiexity

The computatienal complexity of the procedure for computing
a virtual location is quadratic in the nunber of nodes of the graph,
i.e, O(N?), in the worst case. In the average case the complexity is
Hnear in the number of nodes e, O{N). In fact, the actual number of
allocated nodes is much less than the product between the number
of stored images and the fixed number of patches extracted in each
query image i.e. Np {see Section 3.4). In addition, the number of
candidate images is much less than the number of the database
images thanks to the selection carried out by the retrieval criterion
{ses Section 4.1).

The construction of a virmual location is performed for each one
of the retrieved candidate images, which is equal to the number
of database images in the worst case. The most time consuming
part of the virtual location construction algorithm is mainty due to
the eigenvector decomposition procedure used to compute the uz
vector. This procedure is cubic in the number of nodes in the graph,
ie., O[N%)but it is performed only once for all retrieved candidate
images.

A passible straregy 1o mit the computational load is to use
odometry information to “activate” the construction of virtual
locations only in particular situations, such as during turns, where
they proved to be particularly useful.

5, Experiments and results

In this section we describe the experimental setup and the
public datasets selected for testing. in previous works {6,144, the
superiority of semi-semantic feature based methods over low-
ievel feature based methods has been clearly shown. For this rea-
son, in this study the analysis is carried out with the purpose of
highlighting the importance and the role of the different blocks
of the overal! algorithm based on semi-semantic features, and to
perform z deep experimental evaluation of the performance in
different operative scenarios.

5.1. Tuning and validation darasers

The parameters of the proposed algorithm were tuned on the
Gardens Point day-left and day-right dataset used, for example,
int [G]. To achieve a fair comparison, this dataset was not used for
testing. This dataset presents both indoor and cutdoor sections,
repeating patterns along the path, dynamic objects such as pedes-
trians, many corners and curves along the trajectory, illumination
condition variations such as shadows and suntight and 2 typical
scenario of viewpoint variation such as latera] displacement.

The main purpose of the tuning phase is the setting of the
threshold value defining the minimum similarity score between
landmarks in order to map them in a unique node (see Section 3.3].
This threshold is set to 0.3 in our implementation. In light of
the considerations made in Section 3.3, the selected value for the
threshold value was deemed to provide a reasonable trade-off
between speed and accuracy.

The performance evaluation was carried out using the following
four public datasets,

City centre daraser.

This dataset [ 3| consists of left and right view images collected
“roughly” with a spatial frequency of 1.5 m by a Segway robot
along a 2 km path in a urban environment. Right and left images
are acquired at the same time, thus we concatenated each pair and
considered the new “panoramic” images in our experiments. This
dataset is characterized by the presence of dynamic objects such as
pedestrians and vehicles, mild illumination variation mainly due to
shadows and sunlight and mild viewpaint variation due ro lateral
displacement while traversing the same path.

New college dataset.

This dataset 3] consists of jeft and right images collected with
a spatial frequency of 1.5 m by a Segway robet along a 1.9 km
path in a university campus. Since independent right and [eft
images are acquired also in this case, we concatenated each pair
and considered the new “panoramic™ images in our experiments.
The trajectory is articulated and presents many loops and straight
segments traversed also in opposite directions. Also this dataset
contains many dyramic elements, such as pedestrians, and re-
peated elements, since it was acquired in an area characierized by
similar watls, archways and bushes.

Malego Porking 61 dataset.

This dataset 4 1] was acquired in a university parking area using
an electric car equipped with two Firewire colour cameras. For
cur experiments we considered the rectified images of the left
camera. The sequence of images was subsampled at sampling rate
3, thus retaining a fthird of the entire number of images in the
sequence. The explored area covers about 17920 m? and images
used here are taken every 0.4 5. The environment of this dataser
presents moving vehicles and pedestrians and significant sunlight
variations. The trajectory presents many loops, stretches traversed
in opposite directions and many intersections, thus viewpoint
changes are particularly severe in this dataset.
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Table 2
Radius and minimum difference between indices used for ground trutls construc-
tion for each test dataser.

Dataser Radius [m} Min. indices difference
City Centre 10 40
Mew College 10 40
Malaga Parking 61 Z 135
1901 dum_sunay3 + dum_cioadyt 1.5 30D

1D0L dum_sunny3 + dum_cloudy? dataset.

This dataset [9] was acquired in a research laboratory consisting
of five rooms, in different seasons, hours of the day and weather
conditions, by a PowerBot robot equipped with a monocular cam-
era whose height above the floor is 36 em. in order to have signifi-
cant flluminarion variation, we concatenated {wo seguences one
taken on a sunny summer day and the other n a cloudy winter
day. The two sequences have been concatenated after subsampling
them at sampling rate 3, thus retaining a third of the entire number
of images in each sequence. The same trajectory is traversed twice,
with mild differences that however produce critical viewpoint
changes in an indoor enviFonment,

5.1.1. Cround rruth

Although some of the above public datasets provide image
matching information, it was decided to recompute the image
matching matrix in order to use a consistent criterion for all the
considered datasets.

The ground truth was computed on the basis of the GPS co-
ordinates of the images. Namely, we considered two images to
be matching if they were acquired within a small distance radius,
Further, to avoid “trivial matchings” between consecutive images,
a minimum difference between the index value of the matching
images was also defined. In fact, it is obvious that the most similar
tmages to the current query image are the ones acquired imme-
diately befare, but this similarity should be disregarded in the
procedure for loop closure detection.

The IDOL dum_sunny3 + dum,_cloudy1 dataset is the only in-
door dataset that was used in our experiments. Due to the signif-
icant viewpoint variation caused by even small trajectory varia-
tions, for this indoor dataset we decided to match images of the
first traversal with those of the second traversal. Thus, we imposed
a minimum difference between matching images equal to 309, so
that only images belenging to different traversais are considered.

Table 2 reports the parameters that were used far the compu-
tation of the ground truth for each dataset.

5.2, Plan for the experiments

[n order to evaluate the performance of the different blocks of
the proposed algorithm and to compare the overall performance
with those of a state-of-the-ast method we considered the follow-
ing scenarios:

s A state-of-the-art technique that is based on the high level
features extracted by Edge Boxes and AlexNet conv3, that
are also used in our work, but does not use any graph based
representation of the environment {named *HOCE" ~ Heap
Of CNN Extracted features - in this work). This is essentially
the approach proposed by Sunderbauf et al. in {6), This algo-
rithm was here re-implemented and used in an incremental
fashion to be consistent with our approach.

& Our complete approach (named '‘GOCCE' - Graph Of Covis-
fble CNN Extracted features), that exploits the covisibility
graph as described in Section <.
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Fig. 0, Precision-recall carves comparing the different technigues with our novel
apgroach on the fotr test datasets, namely the City Centre dataset 9, the New
Coltege dataset 9h, the Malaga Parking bL dataset i and the IDOL dum_sunny3 +
dum._cloudyt dataset 9d.

« A simplified version of the approach (named 'GOCCEg') that
uses only the covisibility grap for the retrieval of matching
candidates, selected in case they share at least 10nodeswith
the current guery image (in the following this criterion will
also be referred to as *strict retrieval®).

« Another simplified version of our approach (named
‘GOCCERs") that uses the covisibility graph for matching
candidates retrieval, selected if they share at least a node
with the current query image, and for refining the matching
score of candidate locations via subgraph comparison.

As for the settings, we used for each scenario the same values
for the maximum number of patches extracted in each image and
for the minimum similarity score between landmarks in order to
be included in the same node.

5.3. Performance analysis

In a tocalization and mapping application, the loop closure
detection module is essential since it zllows an autonromous agent
to seif-reiocalize and to adjust the map of the environment. This
section reports the resuits of a detailed study that is mainty focused
toward the evaluation of the loop clesure detection performance of
the proposed method. Considering a generic loop closing problem,
it is generatly moare important to avoid wrong matchings along
the trajectory, rather than not to miss 2 matching, ie., precision
is usuatly a more critical reguirement then recall.

To have a syathetic comparison of the performance provided
by the considered variants of our method, in Fig. 9 the precision~
recall curves obtained on the four test datasets are reported, while
Talie 3 shows the precision and recall values obtained at maximum
recall and precision respectively. [t is observed that in the case of
strict retrieval (ie., for GOCCER} the precision is higher in every
dataser (note in particular the performance for the City Centre
dataset in Fig. 93 and for the Malaga Parking 6L dataset in Fig, Sc),
This is mainly due to the fact that the strict retrieval criterion
exchudes a priori many true negative matchings, thus the precision
is higher (see Section 4.1). The main drawback of this approach
is that 100% recali is never reached. This is because true positive
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Table 3
Precision and recall values ar maximun recatl and precision respectively comparing the differant technigues on the four considered datasers,
City Centre Mew College Mataga Parking 6L IDOL
dum_sueny3+dum_cloudy1
Recal Precision Recali Precision Recail Precision Recall Precision
ac 160% at max a 100% ar max at 100% a7 max ar (00% at max
precision recal peCision recall precision recall precision recHl
HACE i5.64% 45.18% 16.00% 41.40% 08.17% 00.56% 0344% 68.73%
GOCCE, 15.64% S.A0% 10.30% G3.44% 18.27% 15.12% 03.13% 12.05%
aro1.74% At Bo.3k at62.50% at BB.A2%
GOCCEgs 16.18% 4585% 07.30% 4321% 0E17% 0356% 032.44% 5E.73%
GOCCE 16.00% 43 68% 10G,30% 4353% 08,17% 00.565% 03.d4% 68.73%

matchings with lower matching scores (that are considered by
the other analysed methods) are a priori excluded by GOCCEq, An
important difference between the graph-free approach {i.e., HOCE)
and the graph-based approaches with unselective retrieval crite-
rion (i.e., GOCCEgs and GOCCE ) was also observed. In fact, especially
on the City Centre Dataset the precision obtained by HOCE at high
recall is aimost 10% inferior to the precision achieved by GOCCEgs
and GOCCE. This fact confirms clearly the beneficial role of the
subgraph matching score (Eq, {71) as additional information to
refine the overall matching scote between images. Performance
abtained by HOCE in the remaining datasets was comparable (just
stightiy inferior) to that of GOCCERs and GOCCE.

Ta evaiuate the performance of the loop closing module it is
also important to evaluate the merric error produced by wrong
matches. Indeed, in order o build a consistent map of the envi-
ronment, a wrong foop closure detection can be considered some-
what useful if the metric ervor is small. [n fact, it is reasonable
that images having a similar visual content are acguired at close
distance each other, thus the localization ervor produced by their
matching can be considered acceptable for a coarse localization.
in other words, errors of a few metres can still allow a reliable
localization producing a consistent map of the environment. The
results of the metric study are reported in Fig. 10, which shows the
average mwetric error, L.e, the average Fuclidean distance between
coordinates of false positive matching images, as a function of the
threshold value applied to the matching score for assessing a loop
closure. Analysing Fig. 10 it can be observed that a low thresh-
old leads mainly to spatially distant false positive matches, while
laege threshold values da not produce false positive matches (this
implies & high precision). Some differences among the methods
were highlighted by this metrical study: the higher precision of
the GOCCE approach is confirmed also in metric terms, while the
method of Sunderhauf et al. in [6] (HOCE) produces less precise
results compared to the methods exploiting the covisibility graph,
especially in metric terms.

Finally, to evaluate the role of the virtual locations, we carried
out an addicional study considering only candidate images that
served as seed for the construction of a virtual location {shown
in Fix 8). In other words, we considered only those matches
between a query image and candidate images that inciuded nodes
from other images, Le., were ased as seeds for a virtual location.
Precision-recall curves obtained considering only this subset of
images are reported in Fig. 11, It may be observed that, especiatly
in the Malaga Parking 5L dataset (Fig. 11¢} our complete approach,
COCCE, obtains good performances thanks to the virtual locations
construction function (note the difference with respect 1o the
GOCCEgs approach that does not calculate virtual locations). The
Malaga Parking 6L dataset exhibits an articulated trajectory, with
many curves, intersections and stretches traversed in opposite
directions. In these critical scenarios a localization and mapping
system can benefit from the virtual location construction in terms
of loop closure detection performance.

In light of this, we use the Malaga Parking 61 dataset for an addi-
tiona! study to evaluate the benefits of the virtual locations in terms
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Fig. 18, Average metric ermor curves, relative to false positive matching errars
comparing the different techoiques on the four considercd datasers, naemely the City
Centre dataset 104, the New College dataser 10h, the Malaga Parking 6L dataser 1
and the O dum_sunny 3 + durn_cloudy 1 dataser 0.
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Fig. 11. Precision—recall curves corapasing the different rechnigues with respect to
our novel appreach considering only candidate images that were used a8 seed for
the construction of a virtual lacation on the four tested datasets, ramely rhe Cicy
Centre dataser 114, the Mew Coliege dataser 11%, the Malaga Parking 6L daraset 11¢
and the IDOL dum_sunny3 + dum_cloudy 1 dataset # 1d.
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Fig. 12. GPS position of candidate images that produced a loop Closure detection
eryor on the Malaga Parking 5L datases for the four considered methods: HOCE 124,
GOCCER 120, GOCCErs 120 and GOCCE 13 Black dots represent GPS positions of
correctly matehed images, green dots are GRS positions of false negarive matching
images and red dots are GPS positions of false posirive marching irnages, Note that
GOCCE has the smallest number of false positive inatches. (For inserpretation of the
references to colour in this figure legend, the reader is referred ta the web version
of this article.)

of loop clesure detection performance. In particular, we consider
the GPS position where virtual locations have been constructed,
these are shown with dots in Fig. 12, For each one of the four
merhods under investigation, the threshold on the matching score
is set at a value that guarantees at least 85% of precision ard 20% of
recall. With these settings. the putput of the lgop closure detection
methods is evaluated. |r Fig, 12, GPS positions of virtual locations
are marked with coloured dots along the paths. In particular, black
dots are used in the case of a correct sugput (i.e., true positives or
true negatives), green dots in the case of a false negative output and
red dots in the case of a false positive output. [t can be observed that
GOCCE produces the smallest rumber of false positive matches: 4
FP against 6 FP for GOCCER, 7 FP for GOCCEgs and 27 FP for BOCE.
These resulis highlight the fact that virtual locations are useful in
scenarios that are particularly challenging in terms of viewpoint
changes, such as curves and oppesitely traversed stretches. Ex-
pioiting virtual locations in these cases makes the loop closure
detection system more precise,

B. Conclusion

in this work, we proposed an appearance and viewpoint invari-
ant place recognition system. The method relies anly on machine
vision images and does not need any specific training when oper-
ating in new unexplored environments,

These characteristics are achieved by modelling inter ohject
geometric retations in the environment by means of a covisibil-
ity graph, whose nodes are high level, semi-semantic landmarks.
‘These landmariks are image patches containing generic ohjects and
are described by means of features extracted by an inner convolu-
tiortal layer of a pre-trained CNN, that are particularly robust to
appearance changes.

We proposed novel specific algorithms that leverage the cov-
isibility graph representation for a fast and robust retrieval of the

most likely matching candidate images. The covisibility graph is
also exploited far refining images matching score based or the co-
presence of landmark contained in the images. We also proposed a
novel strategy for synthesizing virtual locations via a parameter-
free approach that is based on a local graph clustering methed
which exploits covisibility graph connectivity information.

Experimental validation carried out en four public datasets has
shown that, with regard to grecision and recall, our approach pro-
vides performance that is comparable {or superior] with respect to
a state-of-the-art place recognition technigue that dogs not rely on
any graph representation of the environment.

in addition, the construction of virtual locations is usefiel in
specific but critical situations such as turning near 80° corners
or traversing a stretch in opposite directions. In thiese scenarios,
virtizal locations construction provides an improvement in terms
of precision of the loop closure detection system,

Considering metric error (i.e., the metric distance between
mismatched images' coordinates), our graph-based technique
outperformed a state-of-the-art graph-free approach that was con-
sidered as benchmark.

A possible extension of this work would be the implementa-
tion of a strategy that compares sequences of images, rather than
single images. This directly translates in the comparison of bigger
subgraphs.
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Toward Domain Independence for Learning-Based
Monocular Depth Estimation

Michele Mancini, Gabriele Costante, Paolo Valigi, Thomas A. Ciarfuglia,
Jeffrey Delmerico, and Davide Scaramuzza

Abstract--Nylodern attonemous mobile robots require 2 strong
understanding of their surroundings in order to safely operate in
cluttered and dynamic eavironments. Monocular depth estimation
offers a peometry-independent paradigm to detect free, navigahie
space with minivaum space, and power consumption. These repre-
sent highly desirable features, especially for microaerial vehicles.
In erder to guarantee robust operation in real-world scenarios, the
estimator is required to gencralize well in diverse environments.
Most of the existent depth estimators do not consider generaliza-
tion, and only benchmark their performance on publicly available
datasets after specific fine tuning. Generslization can be achieved
by training on several heterogeneous datasets, but their collec-
tian and labeling is costly. In this letter, we propese a deep neural
network for scene depth estimation that s trained on synthetic
gatasets, which allow inexpensive generation of ground iruth data.
We show how this approach is able to generalize well across dif-
ferent scenarios. In addition, we show how the addition of long
short-term memery layers in the netwerk helps to alleviate, in
sequential image streams, some of the intrinsic limitations of
monocular vision, such as global scale estimation, with low com-
putational overhead. We demonstrate that the network is able to
generalize wejl with respect to different real-world environments
without any finc funing, achieving comparable performance to
state-of-the-art methods on the KITTT dataset.

Index Terms—Collision avoidance, range sensing, visual-based
navigation.

I. INTRODUCTION

8§ AUTONOMOQUS vehicles become more common in
A many applications outside the research laboratory, the re-
quirements for safe and optimal operation of such systems be-
come more challenging. In particular, the ability to detect and
aveid still or mobile obstacles is crucial for field operations of the
vast majority of ground and fow altitude flight vehicles. Depth
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information can be used to estimate proximiy to cbstacles and,
in general, to obtain an understanding of the swrounding 3D
space. This perception of the 3D environment can then be used
in reactive [1] or planned {2} control strategies to navigate safely.
LIDAR and sonar sensors can provide sparse 3D information,
but their instattation may be costly, in terms of weight, space
and power, all of which are constrainis for mabile robots, and
especiatly Micro Aerial Vehicles (MAVs). Vision-based sys-
tems, both mono and stereo, can provide dense depth maps and
are more suitable for deploying on small vehicles. A primary
shorwoming, though, is that the detection range and acceracy
of stereo cameras are limited by the camera set-up and baseline
131, [4]. Exploiting geometric constraints on camera motion and
planarity, obstacle detection and navigable ground space esti-~
mation can be extended far beyond the normal range (see {5]
and [6]). However, these constrains hold mostly for ground,
automotive applications, but do not generalize to MAVS,

Differently from stereo systems, monocular systems do not
make specific assumptions on camera motion or sei~up, Sev-
eral monocular depth estimation methods have been proposed
in recent years, mostly exploiting machine leaming paradigms
(I71-111]). The advantages of such systems are that they are
able to learn scale without the use of external wetric informa-
tion, such as Inertial Measurement Unit {IMU) measurements,
arnd are not subject to any geometrical constraint. On the down-
side, these systems rely on the quality and variety of the training
set and ground truth provided, and often are nat able to adapt to
unseen environments.

The chalienge of domain independence is one of the main
obstacles to extensive use of learned monocular systems in place
of stereo geomeirical ones. The question of how does these
systems perform in uncontrolled, previously unseen scenarios
can be addressed by learning features that are more invariani
to environment changes and also by using different network
architectures that are able to learn more general models from the
training samples they have. Unfortunately, there are only a few
tabeled depth datasets with the required ground truth density,
and the cost and time required to create new ones is high,

In our previous work [12] we showed that training a Convo-
futional Nearal Network {CNN) with a inexpensive generated,
densely-labeled, synthetic urban dataset, achieved promising re-
sults on the KITT dataset benchmark using RGB and optical
fiow inputs.

In this work, by using a deeper architecture and an extended
synthetic dataset able to generalize from synthetic data to real

2371-3766 © 2007 1EEE. Personal use is permitied, but republication/redistribution sequires TEEE permission.
See hup:/iwwwiees org/publications_standards/publications/rightsfindex fitml for more information.
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unseen sequences, we (ake an important step towards domain in-
dependence for vision-based depth estimation applications {see
Fig. 1). With robotic-based operations in mind, we reduce the
computational complexity of the network by removing the net-
wark dependence on optical flow, even if it often acts as a
environment-invariant feature. To balance this loss of informa-
tion, we exploit the input stream seguentiality by using Long
Short Term Memory (L.STM) layers, a specific form of Recwr-
rent Neural Networks (RNNs).

QOur experiments show that this solution significantly cutper-
forms previous results. We validate our model on the KITTI
dataset, where we obtain comparable performance 1o state-of-
the-art, speciaily tuned methods.

We also perform validation on two challenging and different
new datasets consisting of sequences captured in a dense for-
est and in a country road, in order to evaluate possible MAV
operation environments. We show how the model is capable of
reliable estimation even on video streams with vibration and
motion blur, making our model suitable for tasks as obstacle
avoidance and motion planning for mobile robots.

II. RELATED WORK

Traditional vision-based depth estimation 15 based on stereo
vision [13]. Its main limitations lie on the lack of tobustress on
long range measurements and pixel matching errors, This aspect
is even more critical in MAV applications where maneuvers
are on GDOF and the lack of plaiform space makes it difficult
to mount a stereo rig with a proper baseline. Finally, weight
and power consumption minimization is highly desirable. For
these reasons, monocular vision is becoming more and more
important when it comes to MAV applications.

Monocular depth estimation based on geometric methods is
grounded on the triangulation of consecutive frames. Despite
the tmpressive results achieved by state-of-the-art approaches
[14}-[16], the performance of their reconstruction routines
drops during high-speed motion, as dense alignmeat becomes
extremely challenging. In addition, it is not possible to recover
the absolute scale of the object distances. Driven by the previous
considerations, in this work, we address both the aforementioned
aspects by exploiting the learning paradigm to learn models that
compute the scene depth and the associated absolute scale from
a single image (i.e. without processing multiple frames).

Learning-based methods for depth estimation have demon-
strated good performance in specific scenartos, but these results
are limited to these environments, and have not been shown
1o generalize well. Saxena er al. [17] first proposed a Markoy
Random Field to predict depth fram a monocutar, horizontaliy-
aligned image, which then later evolved into the Make3D project
£16]. This method tends to suffer in uncontrolled setfings, espe-
cially when the horizontal alignment condition does not kold.
Eigen et al.(f7]. [18], exploit for the first time in their work
the emergence of Deep Learning solutions for this kind of
problems, training a muiti scale convolutional neural network
{CNN) 1o estimate depth. Following this, several other CNN-
based approaches have been proposed. Liu et al. [8] combine a
CNN with a Conditional Random Field to improve smoothness.
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Roy et al. [9] recently proposed a novel depth estimation method
based on Neural Regression Forest. However, the aforemen-
tioned methods [7-{9], [17], [18] are specific for the scenario
where they have been trained and, thus, they are not domain
independent.

For our intended embedded application, computational effi-
ciency is very important, and, in this respect, mostof the existing
methods for monocular depih estimation are not appropriate. In
8] and {9}, although they reported shightly improved perfor-
mances oh several benchmarks with respect ko Eigen ef all’s
work, they cannot guarantee real-time performance on embed-
ded hardware. They report a single image inferencetime of ~f s
both on a GTX780 and a Tesla k80, far more powerful hardware
than the ones generally embedded on MAVs, Conversely, Eigen
et al. method is able to estimate a coarser resolution (1/4 of
the input image) of the scene depth map with a inference time
of about 10 ms. Our systern’s inference time is less than 30 ms
on a comparable hardware (Tesla k40) and less than 0.4 s on
an embedded hardware (Jetson TK1), making real-time appii-
cation feasible. Based on these vartous factors, we chose the
Eigen er af. {7] method to serve as a reference to the state of the
art during our experiments,

Although we are interested in performing well against the
state of the art in accuracy, our primary goal is to develop a ro-
bust estimator that is capable of generalizing well to previously
unseen enviropments, in order to be useful in robotic applica-
tions. For this reason, we did not perform any firetuning on
evaluation benchmarks, focusing on kow architectural choices
and synthetic datasets generation influgnce generalization. Our
previous work propose a baseline solution to the problem, sug-
gesting a Fully Convolutional Network (FCN) fed with both the
current frame and the optical flow between current and previous
frame [12]. Despite optical flow acts as s good environment-
invariant feature, it is not sufficient to achieve generalization
across different scenarios. Furthermore, the computation of the
optical flow considerably increase the overall inference time. In
this work, only the current frame is fed into the network: by us-
ing a deeper architecture and the LSTM paradigm together with
a wise mix of different synthetic datasets we report a significant
performance gain in a simpler and more efficient fashion.

A rejatively unexplored area of research is the training of net-
works given datu scarcity. Recently, Garg et al. [11] proposed
an unsupervised approach for monocutar depth estimation with
CNNs. In their work they propose a data augmentation tech-
nique 1o deal with the cost of acquiring real images with depth
ground truth. However, the augmented dataset has to be gen-
erated from already acquired images, and thus this technique
is unable to generate unseen environments. For this reason the
authors trailn and test only on the KITTI dataset. Qur work is
similar to theirs in the aspect of fnding ways to effectively
augmient training data, but is aimed 10 generalize performances
across different environments. We achieve this exploiting syn-
thetic data, for which exact labels are easily generated. Syn-
thetic training sets are able to represent any kind of scenario,
Hlurnination conditions, motion trajectory and camera optics,
without any limitation imposed by real world dafz collection
equipments. This allows us to reach good performance on dif-
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Fig. 1.  Overview of the propased demaln independent approach for monocular
depth estimation based on CNN. We first train our madel on labeled synthetic
data. We then deploy it for evaluation on rea) warld scenarios. Our experimems
show how Ihe model is able to generalize well across different scenarios withou
requiring any demain specific ine-tusing procedures.

ferent domains., using different training and test images, and not
requiring fine-tuning. However, at the time of the writing of this
work, the asthors of [11] did not yet make their trained model
publicly available for an effective comparison.

1. NETWORK OVERVIEW

A. Fully Convolitional Network

We propose as a baseline method a fully convolutional ai-
chitecture, structured in a encoder-decoder fashion, as depicted
in Fig. 2. This a very popular architectural choice for several
pixel-wise prediction tasks, as optical flow estimation {19} or
semantic segmentation [20]. In our proposed netwaork, the en-
coder section comesponds to the poputar VGG network (211,
pruned of its fully connected layers.

We initialize the encoder weights with the VGG pre-trained
model for image classification. Models trained on huge image
classification datasets, as [22], proved to act as a great generic-
purpose feature extractor [23]: low-level features are extracted
by convolutional fayers closer to the inpuil layer of the net,
while kayers closer to the output of the net exiract high-level,
more task-dependent descriptors. During training, out of the 16
convolutional layers of the VGG net, the weights of the first
& lavers are kept fixed; remaining layers are fine-tuned. The
decoder section of the network is composed by 2 deconvolu-
tional layers and a final convolutional layer which outputs the
predicted depth at original input resolution. These layers are
trained from scratch, using random weight initiatization.

B. Adding L5TM Layers into the Picture

Any monocular, single image depth estimation method suffers
from the infeasibility of correctly estimating the global scale of

[EEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2. NO. 5, 1LY 2017

the scene, Learning-based methods iry to infer globak scale from
the learned proportions between depicted objects in the training
dataset. This paradigm inevitably fails when previously unseen
envircnments are evaluated or when the camera focal length is
modified.

We can try to correct these failures by exploiling the sequen-
tial nature of the image stream captured by a vision module
mounted on a deployed robot. Recurrent neural networks (RNN)
are typically used in tasks where long-term temporal dependen-
cies between inputs matter when it comes o performing estima-
tion; text/speech analysis, action recognition in a video stream,
person re-tdentification §24]-[26}. Their output js a function of
both the current input fed into the network and the past output,
s0 that memory is carried forward through time as the sequence
Progresses:

v; = [(Wx, + Uy} H

where W represents the weizht matrix (as in common feedfor-
ward networks) and U 18 called vransition matrix,

LSTMs are a special kind of recurrent neural network in-
troduced by Hochreiter & Schmidhuber in 1997 to overcome
some of the RNN main issues, as vanishing gradients during
training, which made them very chatlenging fo use in practical
applications [27]. Memory in LSTMs is maintained as & gated
cell where information can be read, written or deleted. Dur-
ing training, the cell learns autenomously how fo treat incoming
and stored information. We insert iwo LSTM layers between the
encoder and decoder section of the previousty introduced FCN
network (see Fig. 3}, in a similar fashion of [24]. Our motivation
is to refine features extracted by the encoder according to the
tnformation stored in the LSTM cells, so that the decoder sec-
tion can return 2 more coherent depth estimation. The proposed
LSTM network is depicted in Image 3. Dropout is applied be-
fore, after and in the middie of the two LSTM layers to improve
regulartzation during training.

C. Training the Networks

We developed two synthetic datasets for leaming depth esti-
mation: the Urban Virtual Dataset {UIVD) and the Forest Virtual
Darser (FVD), producing a total of more than 80 k images (see
Fig. 4). We create the scenarios with Unreal Engine, and exteact
noise-free ground truth depth maps using its tools. To reduce
network’s cutput space dimenstonality and ease training, we clip
the depth maximum range to 40m, although it is theoretically
possible to measure depth up to an unlimited range, Different
illumination conditions, motion biur, fog, image noise and cam-
era focal lengths can be easily simulated or modified, offering
us 2 great sandbox to inexpensively generate highly intormative
datasets and high precision ground truths, The camera moves at
speeds up to about 15 ny/s with six degrees of freedom inside the
built scenarios, collecting franies and corresponding depth mags
at a resolution of 256 x 160 pixels and a frame rate of {0 Hz.
Using these datasets, we trained the following networks:

1) VD _FCN: Fally convelutional network trained on the

Urban Virtual Dataset.
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Fig. 3. I our LSTM netwark, we plug in two LSTM favers with 180 neurons between the encoder and the decoder szction of the netwark,

Fiz. 4. Some images from UVD and FVYD dataset used for training the nwedels.

Fig. 5. Qualitative resulis on the KITTE dataset. On the first colamn RGB input images are depicted. The second and the third columns show the dense ground
traths and MIX_FCN predictions, respectively. The fourth cobumn shows MEX_EIGEN network prediction. Maximum depth sange bas beet irimmed to 40 meters,

2) FVD_FCN: Fully convolutional network trained on the 3) MIX_LSTM: LSTM network trained on both Urban and
Forest Virtual Dataset. Forest Virtual Datasets.

3y FVD_LSTM: 1L.STM network trained on ihe Forest Virtual Networks have been implemented using the Caffe framework
Dataset. and trained on Log RMSE (2) using an Adam: solver with a

4) MIX_FCN: Fully convolutional network trained on both  learning rate of ¢ = 10~ unti} convergence. FCN networks re-
Urban and Forest Virtsal Datasets. quired about 24 hrs for training, while 1L.8TM networks took
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Eig. 6. Qualitative resulis on the Zurich Forest dataset. On the first cofunin
RGB inpui images are depicted. The second and the third columns show the
dense ground truths and MIX_1LSTM net predictions, respectively, The fourth
column shows MIX_EIGEN network prediction. Maximum depth range has
been trimmed o 40 meters. Black pixels in the ground trath represent missing
depth measurements.

about 48 hrs on a Tesla K40 GPLUL

1 :
\/? >y ep gy = logutif. 2

IV. EXPERIMENTS

We test generalization capability of our proposed nerworks
on the KITTI dataset [28], and on two datasets we gathered in a
dense forest in the surroundings of Zurich, Switrerland and in
the countryside near Perugia, Traly, respectively.’

We measure our performances with the following metrics:

1) Threshold eror: % of y; s.t. max(% %:-) =§ < thr

2) Absolute relative difference: & Yoy op 4t
3) Log RMSE: \/% Tyer Il logy ~ log g f?

4) Linear RMSE: [ 5y o1 e — vlP?
5y Scale-invariant Log MSE (as introduced by [7])
L5 df — L(3, 4, withd; = ogy; — logy;

We test on the same benchmark also our previous method
proposed in {12), later referred as OPT_FLOW_FCM.

Furthermore, to properly compare our approach with respect
1o {71, we also implement their coarse+fine network fellowing
the details provided by the authors. We train if on both UVD
and FVD datasets {/.¢c., the same training set we use for our
networks) with a Scale Inv. Log MSE loss. We first train their
coarse model alone for 50 epochs, with a learning rate of 107,
Afterwards, we keep the weight of the coarse model fixed and
train the fine network for about 40 epochs. Their method returns
adx downsampled depth image, thus, during the evaluation, we
upsampie the obtained prediction with a nearest neighbor filter
to match the original input resclution. In the foliowing, we refer
1o this baseline as MIX_EIGEN.

Before discussing the results on the real datasets, we run a set
of experiments to measure the performance loss when the test
domaie differs from the training one. In particular, in Table 1,

tLink to code, datasets and modeds: [29].
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TABLE
RESULTS G VD DATASET

UVE_FCN  FYRUFCN  MIX_FCN  MIX_LSTM
the § < 1.25 0705 0.2H 0463 0.599
the. # < 1.257 0.89% 0.365 0,778 0872
she. § < 1.25% 1368 0403 1938 1054
RMSE 3837 15.697 6581 5.966
Log RMSE D254 1476 1.356 0327
Seate lav. MSE D055 D907 0472 D087
Abs.Rel.[iff. 024 .825 11,066} 0.158%

For threshald errors, highee values are berer For RMSE, Log RMSE. Scals Inv.
MSE and Abs ReLINE, lower values are bener

TABLEN
RESULTS on FVI) DATASET

UYB_FCN  FVD_ICN  MIN_FCN  MIX_LSTM
the d < 1.25 0.32% 8574 1,460 [SR10]
the d 2 1,257 10.571 fA52 [\ Ry L7660
theod = 1,257 0.733 £.939 (1951 (8497
RMSE B2 4.132 514 5.460
Log RMSE 11.656 &340 0402 hd13
Scale Inv, MSE 0.357 o491 106 (h132
Abz.Rel. DifE. 564 £.248 [t 316

we compare the performance of the UVD models evaluated with
respect to the urban domain (the same used for training) and the
forest one. Stmilarly, in Table II, we show the results of the FVD
networks. Clearly, perfonmance drop when the network is tested
on a domain Jifferent from the teaining one {see column 2 of
Table I and column 1 of Table I1). However, we can observe that
extending the training set with images from muhiple domains
and with the LSTM structure helps the network to considerably
increase the generalization capabilities of the CNNs, and as a
consequence, the performance,

A. KITT! Dataset

We evaluate our networks on a test set of 697 images used for
evaluation in existing depth estimation methods {7, [8]. We do
not perform any kind of fine-tuning or retraining on the target
dataset. As reference, we compare with the method proposed
by Eigen et al. [7]. The publicly available depth predictions
they provide were specificaily trained on the KIT1T dataset, so
comparison is not fully fair: our objective is to evaleate how
close our performance can get relying solely on synthetic data.

We resize the input images from their original resolution
of 1224 x 386 pixel to a resolution of 256 x 78 pixels for
computational efficiency and feed them into our networks., From
the provided sparse ground truth, captured by Velodyne lidar
with & maximum range of about 80 meters, we generate a dense
depth map utilizing the colorization routine proposed in [30]. As
the lidar cannot provide depth information for the upper section
of the image space, we perform evaluation only on the bottom
section of the image space. We finally compute the performance
metrics with respect of the windowed dense ground truth, We
discard al the predictions whose correspending ground truth
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TABLE H
RESLRTS aN KITTI PATASET

OQPTFLOW_FCN UVDUFCN FVDLFCN  MIXLFCN MIXLSTM MIX_EIGEN  KITTI_EIGEN (74

thr. § < 1.25 0.421 0.1 £.160 0.512 11338 183 1498 Higher
thr. & < L.25% 1,679 0.6%5 0353 B384 1).634 0456 3830 is
thr. § < 1.25% .5813 549 0.331 081 1.543 10.665 B.087 hewer
RMSE 6.863 - I 9.519 5.654 H.062 7.929 5.699 Lower
Log RMSE .5 0470 0.877 11366 0472 1589 436 is
Scule fuv, MBE {205 0181 0315 7 Q183 .13 #4031 heiter
Abs. Rel Diff, - 0393 0.494 0312 0430 300 11322

It this benchenurk. our dest model (MLX_FCNY ourperforms the Eigen’s nre when the Jatter is rained on our same symbetic dataset (VEX_EIGEN).
Furthermone, it pers results close 1o the ones achieved with the model speciticelly rained on the KITTI dataset (KITTL_EIGLN).

measurement is bevond 40 meters, to be compliant with our
network’s maximurn defection range.

As for Eigen's method, we compare both their publicly avail-
able depth predictions from their coarse+fine model trained
on the KITTI daraser (referred as KITTI_EIGEN) and the
MIX_EIGEN maodel we trained with respect to the synthetic
images on the KITTT test set with the same dense ground truth
we penerated, employing the same benchmark used for our
networks, to ensure evaluation fairness.

On Table I and on Fig. 5 we report results for our FCN and
LSTM networks, the baseline method [12] and Eigen e al.’s
work.

The KITTI benchmark naturally favors networks trained on
urban scenario datasefs, as UVD_FCN. On the other hand, a
forest scenario dataset as FVD does not suit well for this bench-
mark, as FVD_FCN performance clearly depicts, Anyway, mix-
ing together FVD and UVD to form a heterogeneous teaining set
aflows MIX_FCN to improve significantly its prediction qual-
ity over UVD_FCN. With respect to KITTL_EIGEN, our best
network obtains guite comparable performance on all metrics,
recording stightly worse performance on threshoid errors, Log
RMSE and Scale Inv. MSE metrics but even some improvement
on Linear RMSE and Absolute Relative Difference metrics. This
is a very imporiant resuli, especially considering how Eigen's
work has been specificatly trained on the target dataset. Het-
erogeneous synthefic training sets help the networks to leam a
nicely generalizable model, without reeding to resort on fine-
tuning or coliection of costly labeled real world datasets. Fur-
thermore, our MIX_FCN network achieves better performance
with respect to all the metrics than the MIX_EIGEN one. This
suggests that our model has better generalization capabilities
than the one presented in {7].

It is not surprising that the MIX_LSTM network does not
achieve the best performance with respect to this dataset: the
image frames of the fest set are not always sequential and, thus,
the LSTM maodel could not fully exploit its recuirent struchire,

B. Zurich Forest Dataset

We gathered a new dataset in order to test the generalization
of our networks on a real-world forest environment. The three
sequences m the dataset consist of camera hmages captured
while moving through a forested area at a walking pace of
around | m/s. Each sequence lasted approximately 60 seconds

and covered approximately 50 m of distance. These sequences
include a variety of forest densities, tree sizes, and realistic
lighting conditions.

The original images in this dataset were captured with a pair
of time-synchronized MatrixVision mvBlueFOX-MLC200w
monochrome cameras with 752 x 480 resolution in stereo con-
figuration with a baseline of 20 cm. Both cameras were recorded
at 30 Hz, resufting in sequences with approximately 3000 steren
pairs each, Stereo matching was performed on these image pairs
using OpenCV's Semi-global Block Matching algorithm to gen-
erate ground truth depth for validation of the monocular depth
produced by our networks {317,

We tested owr architectures on the three sequences, for a
total of 9846 images. We resize the images on a resolution of
256 x 160 pixels before feeding them into our networks. We
report results for our baseline method OPTELOW _FCN and ail
the networks trained on FVD and MIX dataset. We report resuits
on Table IV and on Fig. 6.

In this experiment, the LSTM architecture outperforms in
atmost all metrics the FCN architecture on both training datasess.
In particular, we observe significant improvements on global
scale-dependent metrics lke threshold ervors, LogRMSE and
the Absolute Relative Difference. This confirms our intuition:
LSTM lavers helps to improve global scale estimation by using
past information to refine current estimations. This comes at a
very low computational additional cost, as depicted on Table V.
As for the experiments on the KITTI dataset, both the FCN
and L8TM architectures perforn better than the MIX_EIGEN
model.

C. Perugia Countryside Dataset

To fwrther evaluate the generalization capabilities of owr ap-
proach, we collected a second dataset in the countryside area that
surrounds the city of Perugta in Italy. Since the MIX_FCN and
MIX_LSTM models are trained in forest and urban contexts,
this new dataset has been specifically gathered to test whether
our networks are able te generalize with respect to domains dif-
ferent from the training set ones or not. Images were collected
using a stereo camera rig mounted on & car driven at around
14 mvs (see Fig. 7). The sequences cover many kilometers of
distance and contain different scenarios, elements (e.g., small
town buildings, sparse tree landscapes, moving cars and others)
and light conditions.
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TABLE IV
RESULTS On ZURICH FOREST DATASEY

OPFELOW_FCN 2] UVDLFON FVD_FCN  MIX_FCN  PVD_LSTM  MIX_ESTM  MIX_EIGEN

the. & < 126 0496 O.115 . 1M 1.148 €126 6,336 13310 Highiet
the d < 1.25% a.m? 1.138 4.231 036 {1263 0.561 1246 is
the.d < 1.2%" 0.195 0408 L3480 £).520 430 0.747 0436 beiter
RMSE LN s L9510 B OES 9293 %526 46 16,673 Lower
t.op RMSE 1,133 1924 LiNT {1.856 [ERY 154 0,768 0,960 I3
Scuale Inv. MBE 0.646 {1393 1.527 {1402 11533 043 0,357 beiter
Abs Rek(hfl, kA ke E.604 LG {378 1427 1,272 LI

Both MIX_FUN and MIX_LSTM ourperform MiX_EIGEN in most of ihe metrics

TABLE V
FPS (FRAME PER SECOND} FOR FCN AND LSTM NETWORKS ON
256 x 160 PIXEL INPUTS

FPS (K40} FPS(TKI)
FCN neis 58.8 i
LET™ acts 353 14

Tested hazdware: Teslh KHY and Jotson
TKI {for MAV onboard deploying).

Fig. 7. Car setup used for collecting the Perogia Countryside Dawaset, On the
right, some sample images of the recorded sequences are shown.

TABLE Vi
REsuLTS N PERUGIA COUNTRYSIDE DATASET

MIX_ECN  MEX_LSTM  MEX_EIGEN
thr. & < §.25 0.204 .209 (197
thr. & < 1.257 0.396 403 1380
thr. 8 < 1.25% 0.567 L5876 1564
RMSE 134%13 12.766 12,923
Loz RMSE 0.802 #3811 O824
Seale Inv. MSE 0.583 1342 {1640
Abs.RofIN. 0.678 0.6M THim

The dataset was gathered with a pair of time-synchronized
Matrix Vision mvBlueFOX3 RGB cameras with 1280 x 960 res-
olution. In order to be able to compute the ground truth at higher
ranges, we sel up a stereo rig with a baseline of 60 cm. Both
cameras recorded at 10 Hz, resulting in sequences with approx-
imately 1600 sterec pairs each. Stereo matching was performed
using the same strategy described in Section 1V-B.

We compare our MIX_FCN and MIX_LSTM architectures
(which showed good generalization capabilities in the previous

Fig. 8.

Qualitative resuits on the Perugia Countryside dataset. On the Grsl
colemn RGE input images are depicied, The second and the third colurns
show the dense grovnd teths and the MIX_LSTM predicions, respectively.
Tie fourth colamn shows MIX_EIGEN network prediction. Maximem depth
range has been trimmed to 46 meters. Black pixels inthe ground truih represent
missing depth measurcrcius.

experiments) and the baselines with respect to three sequences
(5072 images). As the LSTM network and the Eigen’s approach
require input images with 256 x 160, we crop and resize them
accordingly.

The results (see Table V) confinm that the recurrent structure
provides better performance with respect to both the standard
FCN network and the Eigen's approach. Depth estimates {shown
in Fig. 8) are coherent with the actual scene depths, Thus, this
suggests that our models (trained with images from differemt
contexts, e.g., dense forest and urban) are able to generalize
with respect to different domains, considerably extending the
applications contexts of depth estimation techniques.

We cap also observe that the errors are higher with respect
to the KITTI and Zurich forest dataset. However, this could be
explained by the difference of camera intrinsics between the
test and the train setup. Qur networks are stifl able to provide
retiable estimate when processing tmages with different focal
lengihs up to 8 scale factor. Despite the absolute metric ervors
are higher, the relative estimation are consistent (see Fig. 8).

V. CONCLUSION aND FUTURE WORK

We propose a novel, Deep Learning based monocufar depth
estimation method, aimed at micre aerial vehicles tasks, such
as autonomous obstacle avoidance and mofion planning. We
demonstrate how, using solely synthetic datasets, we can train
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a generalizable model that is capable of robust performance in
real world scenarios. We obtained resulis that are comparable
with the state of the art on the KITTI dataset without any fine-
tuning. We also tested our algorithm in two other challenging
scenario we gathered in a dense forest and a countryside, addi-
tionally showing how LESTM layers effectively help to improve
estimation quality on typical MAV operating scenarios with a
fow added computational overhead. Future works will explore
the possibifity of integrating information coming from different
sensors and/or modules {e.g. IMU, semantic segmentation} to
gain a better understanding of the surroundings and implement
an effective reactive control for obstacle avoidance over it.
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Full-GRU Natural Language Video Description for
Service Robotics Applications

Silvia Cascianelli', Gabriele Costante!, Thomas A. Ciarfuglial, Paolo Valigi' and Mario L. Fravolini

Abstract—Enabling effective Humim-Rohat Interaction (HRI)
is crucial For any service robolics application. In this context, a
fundamental aspect is the devefopruent of a user-friendly hunan-
robot interface, such as a patural langrage interface, In this work,
we investigate the rohot side of the interface, in particular the
ability to pencrate natural tanpuage descriptions fer the scene
it observes. We achieve this capability viz a Deep Recurrent
Nearal Network (D-BNN) architecture completely based on the
Gated Recurrent Unit (GRU) paradigm. The robet is able to
generate complete sentences describing the scene, dealing with
the hierarchical nature of the temporal information contatned in
image sequences. The proposed approach has fewer parameters
thun previcus State-of-the-Art architectures, thus it is faster to
train and smaller in memory occupancy. These benefits do not
affect the prediction performance. In fact, we show that our
method outperforms or is comeparable to previous approaches
in terms of quantitative metrics and qualitative evaleation when
tesied on benchmark publicly available datasets and on a new
dataset we introduce In this paper.

Index Terms—Comitive Human-Robof Interaction; Visual
Leamning

I INTRODUCTION
HE ability to provide a description of the scene in a
form that every user can easily understand is keyslone
for the success of cffective and user-friendly service robotics
products. In fact, a natural language description offers an in-
terpretable manifestation of the robot's inner representation of
the scene and is also & good basis for natural language guestion
answering about what is happening in the environment. Hence,
this functionality would provide a friendly interface also for
non-expert people who would then be able to easily interact
with their home robot in the near futuwre.

In the sight of this, this work addresses the problem of
describing a scenc in naturat langnage. which is usually
referred to as Namral Language Video Description (NLVD),
Here we formalize this problem as a Maching Transhation
{MT) one, from “visual language” to English. Basically, the
information in form of a varying length video sequence is
encoded in a fixed-length vector and then decoded in form of
varying length English sentence (Fig. ).
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! "A car arrives and Lvwo aen get oubt of ie” i
B i

Fig. I: Overview of the proposed NLVD system. The robot
observes a generic and complex scene and represenis i Lak-
ing into account both the visurl and temporal information,
represented vin ConvNet features and an encoding vector,
respectively. Then, it outputs a natural language sentence
describing the observed scene. The proposed encoder-decoder
scheme is entirely based on GRU recurrent anids.

The video translation is performed via I-RNN5, fe., recur-
rent models that are able 1o deal with both fong and short
term dependencies in data sequences. Most of (he previous
approaches rely on the Long Short-Term Memory (ILSTM)
[1] architeciure. Recently, Generalized Recurrent Unil (GRU)
[2] were proposed as a simplification of LSTM onits, Their
performance is simifar (o LSTMs", but with fewer parameters
to train. This makes the recurrent networks based on GRU
fagter to train and less prone to overfitting. Saving training time
in any deep learning application is critical when uping hyper
parametess for field application, such as robotics. For ihis
reason, in this paper we explore the performances of a NLVD
system completely based on the GRU paradigm, comparing it
10 State-of-the-Art approaches that exploit LSTMs.

In this work, 2 f0ll-GRU NLVD system is proposed, that
is able to deal with the hierarchical naure of the temporal
information typical of natural and generic video sequences and
obtains comparable performance with respect to more complex
State-of-the-Art (So1A} systems, The proposed system features
a GRU cell modified in order to automatically change its tem-

i
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feationsfriphtsfindechind for e information.
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poral connection if a boundary, Le., a significant modification
in the scene, is detected. To the best of our knowledge, this
is the first full-GRU encoder-decoder architecture applied to
the problem of NLVD. In addition, a new small dataset for
NLVD in typical service robotics scenarios is used, which
offers a fair test bench for the specific applicalion we target.
The relevance of this dataset. is twofold. Figst, this is the first
datasel specifically collected in typical applicative contexts of
a service robol. Second, it helps to get insights on the actual
performance of SotA NLVD maodels we are testing. Indeed,
these systems are commaonly trained and tested on videos from
the same datasets, which may make their evaluation biased.
The experiments on our dataset makes this more evident.

To summarize, the main contributions of this work are:

« Wa propose an improved architecture for NLVD that
is based on GRU units, to save training time without
impairing the performances.

» We perform an experimental evaluation of our method
with other SotA approaches. The experiments show that
this method ohtains comparable performances with SotA
methods that harness LSTM,

» We present a dataset that features a wide range of contexts
that are typical for service robotics applications.

The remainder of this paper is organized as follows. In
Section IH the proposed approach is described. Section IV
provides a detailed description of the experimenial resulis and
conclusion are drawn in Section V.

II. RELATED WORK

In recent years, many researchers {rom both Computer
Vision and Natura! Langueage Processing communities are
studying the problem of describing generic videos using
naturat language phrases {see e.g., [3], 4.

Some popular approaches [4], {5] are based on filling-
in predefined template sentences with the subject-verb-object
concepts detected in the video. In particular, an obiect detector
{e.g.. 2 CNN as in [57) is used (o recognize the main actors in
the video and a Probabilistic Graphical Modet (PGM) (e.g.. an
Hidden Markov Model as in [4]) is used to predict the relation
between them, These approaches have major limitations. First,
the type and the number of the objects and the relations that
can be described are limited to those that the detector and
the PGM can estimate. Second, the ontput descriptions lack
in diversity and naturainess.

Other works [6] propose to tackle the NLVD task in a mulli-
modal retrieval fashion. In particular, given a corpus of paired
videos and text, the system describes a new video using the
sengtence associated 1o the most similar video in the corpus
[6]. Also this approach has some weaknesses, In particular,
the system is consirgined to use the same sentences in the
corpus, which may be not semantically refevant for the new
scene to describe.

Among the proposed strategies, treating the NLVD problem
as a Machine Translation (MT) one gained popularity [7]
and D-RNN demonsirated to be a very promising instrument
(8], {9], {101, This is particularly wue when recurrent mod-
els are combined with State-of-the-Art Convelutional Neural
Networks (ConviNet), even pre-trained.

3766 [¢) 2017 [EEE. Personai use is permitted. bug republicationfredistribution requires IFEE permission. Sec htypn/fwwnwiece.orgfpublicarions, standsrde’publications/righsfindet bt for meore bdormation.

Despite of the success of recent State-of-the-Art appeoaches,
NLVD is still a particularly challenging problem, firstly due o
the “object™ of the description itself, i.e., the video sequence,
thal is typically open-domain and complex in real scenarios.
In particular, the content of the videos can be highly diverse
and the temporal dependencies between the depicted events
can be at different pranularity. Some architectures exist that
produce accurate descriptions of videos, but in general these
are either very shorl or very specific, or both, ie., they depict
simple activities of a particidar domain with few “actors” in
the scene [91, [5]. Those kinds of video sequences are far
simpler than the typical complexity that a robot faces in real
application conlexts. The systems presented in {8) and [10]
deal with gencric and complex videos. Both of them represent
the video sequence by mean-pooling the ConvNet features
extracted from each frame, then decode the scnience with a
LSTM-based decoder. A major drawback of those strajegies
is that they do not take into account the temporal structure of
the video sequences due to mean-pooling.

Indeed, when considering more complex and generic video
sequences it is crucial to deal with temporal dependencies
at different pranularity. This is done in [T}, [E2} and aiso
in this work, where a hierarchical representation of the lem-
pora} information is explicitly leamed. In [1#] the authors
draw [rom ConvNets the idea of convolutional operations
and build a muiti-level {L8TM-based encoding able 10 capture
tonger time dependencies between Lhe content of the frames,
Then, a LSTM decoder produces the description exploiting
an attenton mechanism {that is basically a leamed weighting
strategy). The work of [12] is the most similar to our work.
It presents a LSTM-based decoder that contains a boundary-
aware LSTM cell. This ceH and a second layer LSTM block
build an encoding of 1he video sequence which is then decoded
via a GRU.

All of the above approaches, either consists of full-stack
LSTM architectures or limit the use of the GRU to the
decoding phase. In this paper, we present an encoder-decoder
architecture that is completely based on GRU blocks, which
have fewer parameters than LSTM, thus resulting arguably
mare suitable for robotics applications. This is motivated also
by the swdy reported in [13}, that compares the GRU and the
LSTM cells on various tasks, Using input, state and output
vectors of the same dimensionality, the GRU outperforms or
is comparable 1o the LSTM in terms of convergence time,
paramelers update and gencralization,

111, ENCODER-DECODER FULL-GRU ARCHITECTURE

Ist this section our proposed modet is presented. The video
frames are described via the ResNet50 and the C3D ConvNets
{sce [II-A). The obtained feature vectors are then fed, one at
each time-step, in the first layer of the encoder. This is our
proposed BA-GRU recurrent block, that encodes the video
frames uniil a boundary is detected. Afterwards, the first-
layer cncoding is fed to the second layer of the encoder,
which consists of a classical GRU block {see [I-B), The
outpul of the encoding phase is a vector representing the
entive video scquence. Finally, the GRU decoder produces the
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description emitting the most prebable word at each tme-
step, conditioned to the video vector representation and the
previous emitted words (see 13-C). The captioning process
ends when 2 <EOS> tag (ie. the full-stop) is emitted. A
pictorial representation of the system is shown in Fig. 2.

A. Video Frames und Caption Words Preprocessing

The video frames are preprocessed as follows, The output
of the last fulty connected layer of the ResNet50 ConvNet {14]
is computed every five video frames, to capture the appearance
of the scene. To the same video frames is associated also the
output of the €30 ConvNet [13] 10 caplure the movement
in the scene, based on partialty overlapped sliding windows
of frames. The output of the two ConvNets are concate-
nated (farming a 2048+409G-dimensional vecter) and mapped
in a leamed 512-dimensional linear embedding. The entire
video is then represented by a sequence of featares vectors
(xy,X3,.... X, }, where the . vectors are the feature vectors
extracted from the frames of the video.

The captions are preprocessed as follows. First, the words
are converted to lowercase and the punctuation characters
are removed. Then, hegin-of-senience (<BOS>) and end-of-
sentence (<EOS>) tags are added before and behind the
sentence, respectively. Finally, the sentences are tokenized.
From the tokenized semences, we build a vocabulary (7). To
prevent the formation of a large vocabulary containing many
rare words, we retain only those tokens thal appear at least
five times in the caption corpus. To each token is associated
an index in the vocabulary, based on its frequency in the
vacabulary. A caption is then represented by a list of one-
hot vectors (¥,.¥e, ..., ¥ ), each of them corresponding Lo the
representation of its words in the vocabulary. Simitaly to what
is done for the frames features, the captions are mapped in a
learned 312-dimensional linear embedding.

B. Video Encoder

in this work, we build upon the boundary-aware LSTM
(BA-LSTM) cell presented in [12} and devise a boundary-
aware GRU (BA-GRU) cell. This cell is the first layer of
a two-layers encoder. The second layer of the encoder is a
simple GRU cell (2].

The BA-GRY is a modification of the classical GRU cell
{see Fig. 2, top right), The GRU is a recurrent neural networks
with gating strategies 1o model wider temporal dependencies
in the input sequence. The GRU is characterized by an update
gate z; and & fesel gate Iy At each limestep, a candidate
activation h; is computed based on the current input x,, the
previous inner state hy.; and the values of the gates, In
particufar, the z, gate controls how much the inner state by
hag 1o be updated, the r; gate controls how much the previo_us
inner state by_.1 influences the candidate inner state value h,.
More formally, the GRU is defined by the following equations:

hy = (1 — z)hey +2b 1))
h; = tanh{Wy % + Win(ry @ ey} + by) @)
Iy = J(H'ft':rxt + Wophy g + hr} {3y

#

where the W..s and b.s are learnable weight matrices and
bias vectors, ¢ is the sigmoid function, fanh is the hyperbolic
tangent function and & is the element-wise produci.

Tn this work, we modify the GRU by adding 2 boundary
aware gate &, that modifies the inner connectivity of the unit
based on the input and the inner state, in pasicular, when
a subsiantial change in input sequence occurs, a boundary is
estimated by a learnable function. Consequently, the ianer state
ey is emitted as outpur (we denote it as h§' = hy_;) and
then re«inifialized 1o zero according to;

7 = o(Woox, + Wephey 4+ b.)

hyoy & hyo {1 — ) (5}
The boundary-aware gate is defined as follows:
{6)

where W,,s and h, are learnable weights matrices and bias
vectors. In this study, we set to 128 the number of their rows,
The row vector w! makes the input 1o the 7{) function a
scatar. The () function is given by:

i

The given output hf' summarizes the video substream
before the boundary, which is then composed by homogeneous
[rarmes. For an input video, the BA-GRU block outpuls as
many vectors h§', as the number of delected boundaries
(hh, b, .. heh), with m < n. Those vectors are given in
input to the second layer of the encoder, which is a standard
GRU block. This layer encodes the k' vectors in a unique
veclor v, that represents the entire video. The v vector, that is
the final output of the two-layer encoder, is fed to the decoder.

1) The Boundary-Aware Gate Training Details: The output
3; of the boundary-aware gate can be either 0 or 1, depending
on the value of a sigmoid function applied to the input of
the gate. Thus, following the approach of [12}, in the training
phase we model it a5 a stochastic binary neuron and learned its
weights, while in tcst phase we use it with the learned weights
as the deterministic neuron defined in Eq.7. In particular, we
re-write the activation function () as:

5~ U0, 1)

¢ = (Wl {Weuxy + Waphyog + b))

if (-) < 0.5

. (N
otherwise

(8}

where 1. is the indicator function and I4(0,1) denotes 1he
uniform distribution between 0 and 1.

Note that 7{-) in Bq.7 is basically the composition of a
step function and a sigmoid function. Thus, its derivative is
equal to 0 everywhere except in 0, fe., it is not continuous
and smooth and it is also mostly flat, Hence, we cannot apply
the standard back-propagation 1o compuie the gradient in this
gate. To overcome this issue, we follow the same approach
af [12], that estimated the gradient by approximating the siep
function 7{-) as the identity fonction [16]. The derivative of
7(-} then becomes:

ar
a()

() = apynas

do
()= _873{') = g(-)(1 —a{-}) e
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drinking

A young woman is

a cup of

Fig. 2: Architecture of the proposed system, Recurrent layers are depicted as unfolded graphs for explanatory purpose.

In the test phase, we use the deterministic form of (')
{Eq.7), the parameiers of which have been fearned in the
training phase using Eq.8 (in the forward pass) and Eq.9 (in
the backward pass).

C. Caprion Decoder

The decoder takes as input the video representation v and
the ground truth senience (¥,,¥s,...,¥z)- Al each timestep,
it outputs a word y, that is the most probable next word of
the description, given the previous output words and the video
representation.

To handle both the rime-varying input (¥y.¥s, ... ¥,) and
the constant input v, we modify £q.2-4 from the original GRU
formuiation as:

fl; = tanh(ﬁ»’hyﬁ-’wyi + Wi+ Wip(r, ©he_y) +by) (10)
Fy = J(‘["Vry"'vac + Wy - Wepheos + by) {1
Ty = 6(1‘{’;!‘,”’:”)} + Wopv 4+ Wonheg + by) {12}

where the W, .5 and b,s are learnable weight matrices and
bias vectors respectively, o is the sigmoid function and © is
the element-wise product. The matriz Wy, maps the input one-
hot vectors representing the words y; in the vocabulary space
in a lower dimensional space (512-dimensional embedding).
The owput of the decoder (which we denolc hf = hy) is
then mapped back in the original higher dimensional space as
¥, = Wphi.

The probability of the next word in the description is
modelled via the softmax function, fe.,

¥ Wbl
yei
Finally, the objective functica to optimize is the log-likelihood
of the correct words over the sentence fe.,

Prly ¥, %5 s Yi1s ¥) ~ (13)

L
m\g,»x;wgf’r(mya,yn---,ymﬂ) (14)

where W denotes all the parameters of the model.

IV, EXPERIMENTS AND RESULTS

In this section, we present the experimental seup and the
obiained results of our method.

A. Datasets Derails

We employ two publicly available large datasets that are
commanty used to study the NLVD problem. In addition, we
test on a smaller dataset that we collected to be representative
of datly activities that are typical of service robolics scenarios.

a) Max Plank Institute for Informatics Mavie Description
Dataset (MPI-MD); This dataset [17] contains over 68000
clips of average 45 each, from a corpus of 94 HD movie of
diflerent genres. Those clips are assoctated with sentences
taken from the movie script and the transcribed Descriptive
Video Service (DVS!) track. As a common practice, we use
the training/validation/test spiit provided by the authors of the
dataset, resulting in 56 818 training clips, 4930 validation clips
and 6584 test clips. This split is the same typically used for
NLVD systems [3], [7] (1E, [121, [18], {19]. The vocabulary
is oblained from the training corpus and consists of 7198
words.

b) The Microsoft Research Video Description Corpus
(MSVD): This dataset [20] contains home~-made 10-20r long
videos from YouTube. The topics of the videos include sports,
animals and music. We retain the 1970 clips that have Eaglish
captions associated. The caplions are on average 43 for each
video and have been collected by the Amazon Mechanical
Turk service. As the common practice [7], [BL FL1O], {111 {12],
[19], we use the first 1200 videos for training, the next 100
video for validation and the last 670 video for testing, Note that
each video-caption pair is considered as a unique sample, so

{Pescriptive Video Service is an sudio track associated © a movie 10 allow
the visually impuired people 10 enjoy aiso the visual content of the movie.
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the actual number of samples in each splil is average 43 times
the number of videos. Again, we construct the vocabulary from
the training set and obtain a vocabulary of 4215 words.

¢} Inteltigent Systems, Automation and Roborics Labora-
tory Video Description Daraset (ISARLab-VD): For this work,
we collect a relatively small dataset. Despite that, our dataset
is still generic in terms of depicied actions, environment and
involved actors. Nole that, none of the above datascts have
been conceived for service robotics applications. This was a
major motivation for us to produce the dataset. It containg
100 videos which length varies from 5s 1o 30s. Each video is
paired wilth 5 manually obtained independent captions, for &
total of 800 samples. The dataset features both high resolution
and low resolution videos. In particular, the latier are obtained
using the built-in camera of the COZMOQ toy robot by Ank#
during the experimental phase of this study. In this work, we
use the entire ISARLab-VD dataset for test onfy,

B. Evaluation Metrics Overview

In this work, we adopt classical naturat language processing
metrics for the evalnation of our method, which is a common
practice in the NLVD research. These metrics are briefly
described here Tor clarity and we refer to [213, [22), [23], [24}
for further details. First note that a r-gram is a sequence of »
consecitiive words, When comparing a candidate sequence X
and & reference sequence Y, the #-gram recall is the proportion
of a-grams in Y that appear also in X, while the n-gram
precision is the proportion of n-grams in X that appear also
in Y.

The first metric we use is BLEU [21], in its 4.gram varianat.
It is a precision-oriented metric designed for MT evaluation,
Basically, it combines the n-gram precision for each n-gram
up to length 4 and penalizes the difference in length between
the candidate and the reference sentences. BLEU correlates
well with human judgement on the quality of the translation
if evaluated on the eatire test corpus, but its correlation at
sentence level is poor,

We also adopt another MT evaluation merric, namely ME-
TEOR [22}. [ combines unigram precision and recall based on
matching unigrams in the candidate and reference sentences.
Unigrams can be matched in their exact form, stemmed form,
and meaning. METEOR correlates well with human judgement
alse at sentence level.

The third metric we use is ROUGE 23] in its variant
ROUGE;, that considers the Longest Common Subsequence
(LCS) of the candidate and the reference sentence. ROUGE is
a recall-oriented metric desipned for summarization evaluation
following the idea that a good candidate summary overiaps &
reference summary. Note that all ROUGE variants correlate
well with human judgement.

Finally, we adopt a recently developed metric for assessing
image description guality capiuring human consensus on it,
pamely CIDEr [24]. It is based on the average cosine sim-
ilarity between sn-grams of differcat order (up to 4-grams)
and rewards fength similarity between candidate and reference
sentences. Cosine similarity allows taking into account both

Thups:www.anki.comfen-us/cozmo

precision and recall. This metric correlates well with human
judgement by desipn, thus is particularly suitable for the task
of NLVD.

C. Baseling Methods Overview

We quantitatively compare our system to some of (he
State-of-the-Art techniques presented in Section H, namely
$A-GoogleNet+3D-ConvNet [19], S2VT [7], LSTM-YT [8],
LSTM-E [10], HRNE {i1] and BA-LSTM [12]. In addition,
we compare 1o Yenugopaian el al. [ 18] and to Rohrhach et al.
[31. SA-GoogleNet+3D-CNN applies an attention mechanism
to seleet the most relevaat video frames based on GoogleNet
[25] and 3D-CNN {26} extracted features, and an LSTM to
generate the deseription sentence. S2VT uses a stacked LSTM
encoder-decoder on the basis of ConvNet features extracted
rom each frame via VGG-16 [27]. LSTM-YT mean-pools
each frame's AlexNet {28] ConvNet features and decodes this
representation via a LSTM. LSTM-E learns an embedding
based on the frame-level extracted mean-pooied VGG-19 [27]
and C3D [15] ConvNet features and the video description,
then generates a sentence via a LSTM. HRNE represents each
video frame viz GoogLeNet features and applies a hierarchical
multi-layer LETM encoder and a LSTM with soft-attention
decoder. BA-LSTM is the most simifar 1o our approach, but
it uses LSTM blocks in the cncoding phase. Veaugopilan
et al. {18} improves S2VT using a ncural language model
and distributional semantics learned from a large text corpus.
Rohrbach et al. {3] uses CRFs 10 obtain tuples of verbs, objecls
and places on the basis of ConviNet features extracted from the
video via pre-trained ConvNets, then translated the tuple into
a senteace via a L3TM.

Differently from SA-GoogleNet+3D-CNN and HRNE, we
do not apply any atlention mechanism to deal with different-
granularity time dependencies in the videos. As opposed to
LSTM-YT and LSTM-E, we explicitly model the remporal
dimension of the video sequence via the recurrent encoder,
Finally, another major difference between our approach and
the basetines is that we use a full-GRU architecture,

Note 1hat, since BA-LSTM is the closest to our method,
we used the same setiings as the authors of [12] to better
compare the two architectures, In particular, we set to 1024
the size of the inner state vectors and use the same size for
input vectors, embeddings, weight matrices and bias vectors.
Embedding matrices and weight matrices applied o inputs
are initialized via the Glorot normai initializer, these applied
to inner states are initiatized via the orthogonal initializer and
the bias vectors are initialized 1o zero, We perform the training
until the validation loss stops improving {or up 1 100 epochs),
with mini-baich size of 128. As optimizer, we apply Adadelia
with learning rate /. = 1.0, decay constant p = .95 and
parameter ¢ = 10~ The input and the outpul of the BA-
GRU and the GRU in the encoding phase are regularized via
Drropout with setain probabitity p = 0.5.

D, Results on the Standard Datasets

The performance is evatuated on the MPI-MD and MSVD
datasels and expressed in terms of the widely used metrics
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Model B.-i M Ry C
SA-GoogieNet+3D-CNN [19] - 37 - -
SIVT-RGEB (7] 65 63 53 9.0
Venngopalan et al, [18] - 68 - -
Rohrhach et al. {31 08 790 150 100
BA-LSTM [12} 0.8 7.0 167 108
BA-GRU (ours) 08 63 163 1L7

TABLE E: Experiment results on the MPII-MD datasel in terms
of the guantitative evaluation metrics BLEU in its 4-gram
variant {B), METEOR {M), ROUGE in tts LCS variant (Ry)
and CIDEr (C). Bold indicates the best performance.

Modet B,1 M R;_, C
SA-GoopleNet+3D-CNN [(9] 419 28.6 - -
LSTM-YT {8] 333 204 - -
S2VT [N - 268 - -
LSTM-E [i0] 453 310 - -
HRNE [} 467 338 - -
BA-LSTM [12] 415 313 6868 555
BA-GRU {ours) 425 320 688 59.0

TABLE II; Experiment results on the MSVD dataset in terms
of the quantitative evaluation metrics BLEU in its 4-gram
variant {B4), METEOR (M), ROUGE in its LCS variant {R;)
and CIDEr (C). Bold indicates the best performance. Values
in italic are obiained by re-running the code released by the
authors of [12], which differ fram those declared in their paper.

presenied in IV-B. For consistency sake with the hasclines,
we use the original COCO evaluation script®.

The results are summarized in Tab. I for the MPII-MD
dataset and in Tab. II for the MSVD dataset. It car be observed
that our method is competitive with all the other approaches
in terms of all the metrics, More impartaatly, it cutperforms
all the baselines in terms of the CIDEr metric, that has been
reported in 24} best capturing human conscnsus on captions,

The lower performances of the MPIE-ME dataset compared
to MSVD are due to the fact that in the former the ground
truth is taken from the DVS subtitie system, s0 it is not a
real description of the scenes. Furthermore, the ground truth
captions in the MSVD dataset are more precise and higher
in mumber when compared to those of the MPIL-MD dataset
{~40 versus 1-2). Some examples are given in Fig. 3.

In addition, to gain some insights on the statistical signif-
icance of the presented quantitative results, we perform a K-
fold cross-validadon {with K= 10} of our approach and the
BA-LSTM baseline on the MSVD dataset. We choose this
dataset because it is smatfer than the MPIL-ME dataset, thus
the model assessment experiment can be run in less time. The
resuling values for the evaluation metrics, expressed in lerms
of mean and standard deviation, are reported in Tab. IIT. It is
observed that our method is stil) comparable to the BA-LSTM
baseline.

hitps:figithob.comitylin/soca-caption

[e ] man is lifting a
BA-LSTM: A man is riding a car.
BA-GRU: A man iz lifring a car.

(a)

GT: Wews crew helicopters hover in the alr above
the scens.
BA-LSTM: The crowd is in the river.
BA~GRU: Someone looks at the crowd and turng to
the ground.

{b)
Fig. 3: Example results on a video from the MSVE test subset
34 and on a video from a movie in the MPIL-MD test subset
3b.

Model By M R C
BA-LSTM  4E5+16 314203 685205 3.1k20
BA-GRU dp1E0Y 312407 683k£05 5335438

TABLE IHI: Experiment results of the K-fold cross.validation
or the MSVD dataset in teems of the guantitative evaluation
metrics BLEU in its 4-gram vadant {B,), METEOR (M),
ROUGE in its LCS variant (R} and CIDEr (C). The results
are expressed in terms of nean and standard deviation.

We also cvaluate the training and testing time of the ten
different vasiants of both BA-GRU and BA-LSTM. In partic-
ukar, for BA-GRU the test time is on average 18080 4= 5.28
ms, while for BA-LSTM is on average 197.78 £ 3.70 ms.
In rerms of rtraining ume, for BA-GRU it is on average
~ Bh21'%: ~ 5h34', while for BA-LSTM it is on average
~ 13440°E ~ 3h22'. Despite both the BA-GRU and the
BA-LSTM require much time to complete the trainirg phase,
saving 5 hours for each training belps in faster iieration when
tuning hyperparameters for network deployment. For example,
in the case of our 10-fold cross validation we saved on average
50k with respect to the BA-LSTM model, and this could make
the difference during the deploymenl of the architecture in a
real robotic application.

The GRU block has fewer parameters than the LSTM block.
In particular, our method BA-GRU requires approximately
114MB of memory 10 store network weights, while the BA-
LSTM needs 1238MB. Another benefit of using fewer param-
eters is that it reduces the risk of overfitting and, potentially,
it allows the model to better generalize on completely new
datasets.

E. Resulis on the ISARLab-VD Datasels

We further evaluate and compare BA-GRU with BA-LSTM
on our collected dataset. Mote that, in this case the algorithms
are nol trained on any subset of the ISARLab-VD dataset, With
this experiment we want {0 test the generalization capabilities
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Model B, M R C

BA-LSTM or MSVD 140 195 3516 233
BA-GRU on MSVD 147 200 528 217
BALSTM on MPII-MD 000 084 182 069
BA-GRU on MPII-MD 000 (2.1 202 106

TABLE IV: Experiment results on the ISARLab-VD dutaset
in terms of the guantitalive cvaluation metrics BLEU in its 4-
gram variant (B4}, METEOR (M), ROUGE in its LCS variant
(R and CIDEr (C). Bold indicates the best performance.

Model B.; M R I C
BA-LSTM 142308 19003 50807 232440
BA-GRU 15.04£500 19405 $512+08 247126

TABLE V: Experiment results of the ten varianis of the
BA-GRU and BA-LSTM models obutined via K-fold cross-
validation on the MSVD dataset in terms of the quantitative
evaluation metrics BLEU in its 4-gram variant (B4), METEOR
(M), ROUGE in its LCS variant (R} and CIDEr (C). The
results are expressed in terms of mean and standard deviation.

of the two architectures. We report the results of both the BA-
GRU and BA-LSTM architectures trained on either the MPII-
MDD and MSVI> datasets, both in quantitative and qualitative
terms,

In particular, in Tab. TV we report the resufts in terms of
the previously defined cvaluation metrics. For the statistical
significance of those results, we refer to Tab. V. There we
also report the resuits of the ten variams of the BA-GRU and
BA-LSTM models obtained via K-fold cross-validation on the
MSVD dataset.

Some cxamples are given in Fig. 4 showing high reso-
lution and low resolution videos. The reporied ground truth
description is the most representative of the multiple caption
associated 1o the clips. We refer to the compiete results corpus
available ontine* For further examples. kt can be observed that
the quality of the videos does not influence the semantic and
syniactic correctness of the description produced by the two
methods. On the other hand, we observe that the captions for
the videos of the ISARLab-VD dataset are simpler and less
precise than those produced for the test subset videos of the
public dataset used for the training. This suggests that these
NLVD systems do not generalize well with respect Lo scenarios
that significantly differ from those observed in training phase.
Despite that, we can observe thal the use of the BA-GRU
gives a slight performance improvement. This suggests that
the BA-GRU could be better suited o achieve architectures
more robust to domain changes. The exploration of this aspect
is beyond the scope of this paper, but this insights could be
definitely useful for future investigations.

V. CONCLUSIONS AND FUTURE DEVELOPMENTS
This paper focuses on the NLVD task and presents a full-
GRU encoder-decoder architecture to address it. We show that

* hitpy/isarunipg ivfindex. php?option=com_conteni& view=article&id=46&
calid=2& [emid=| 88
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Gr: A wan ig walking in a office corridor.

BA-LSTM (MSVD): A man is jumping.

BA-GRU (MBVD): A man is running on a wall.

BA-LSTM (MPII-MD}: Two wan walks up.

HA-GRU (MPIT-MD): Man opens the door and walks
cut of the office.

)

GT: Bomeone is driving & car.

BA-LETM {MSYD): A car is driving down the road.

BAR-GRD {MEVD}: X man is driving a car.

BA-LSTH (MPII-MR): Two car pulls up.

BA-GRU [MPII.MD): Cay pulls u the skreet and runs
cut of cthe car.

b

&r: A man is playing & guitar.
AR-LSTH (MSYB}: A men is playing a guitar.
BA-GRI} (MSVD}: A man is playing a guitar.
BA-LSTH (MPII-MI): Twe maa is a gun.
BA-GRU (MPIZI-MD): Sound of the man is in the middle

of the window.

(c)

Fig. 4. Example results on videos from the ISARLab-VD
dataset. In particular, 4a and 4b refer to videos that have
been coBected with two different hig resolution cameras,
while 4c refers to a low resolution video collected during the

experiments with the Anki's COZMO robot.

the proposed approach is faster to train and less memory con-
suming that other State-of-the-An algorithms. Qur method is
also competitive in terms of performance on the public datasels
which were partially used also for training. The experimental
results on the devised dataset show that all metbods have
scrious overfitting, making the generalization capabilities of
new algosithm one of the most important gueslions o solve
in future work.

Other futsre work is the ability to better cope with videos
of variable lengths. This issue could be tackled by cutting the
continuous video sequence in shorter chunks and describing
cach chunk using our proposed method as it is. However, being
able to deal with much longer videos is surely of great interest
and the development of effective solutions to this problem wil
be the subject of tuture work.

The code and the dataset used for this study are publicly
available online.
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J-MOD?2: Joint Monocular Obstacle Detection and
Depth Estimation

Michele Mancini!, Gabriele Costante!, Paclo Valigi! and Thomas A. Ciarfuglia!

Abstraci—In this work, we propose an end-to-end deep ar-
chiteciure that jointly learns fo detect ebstacles and estimate
their depth for MAV flight applications. Most of the existing
approaches rely either on Visnal SLAM systems or on depth ¢s-
timation models to boild 31 maps and detect olstacles. However,
for the task of avoiding ohstacles this level of complexity is not
required. Recent works have proposed multi task architectures
to perform both scene understanding and depth estimation. We
follow their path and propose a specific architecture to jointly
estimate depth and obstacles, without the need fo compute
a global map, but maimaining compatibility with a global
SLAM system if needed. The network architecture is devised
to joinily exploit the information learmed from the cbstacke
detection task, which produces reliable hounding bexes, and
the depth estimation one, increasing the robustness of both to
scenario changes. We call this architecture J-MOD?, We test the
cffectiveness of our approach with experiments on sequences wilh
different appearance and focal lengths and compare it to SolA
mulii task methods that perform both semantic segmentation and
depth estimation. Tn addition, we show the integration in a full
system using a set of simulated navigation experiments where a3
MAV explores an unknown scenario and plans safe trajectories
by using our detection model.

Index Terms—Range Sensing, Visnal Learning, Visval-Based
MNavigation

I, INTRODUCTION

BSTACLE avoidance has been deeply stadied in robotics

due to its crucial role for vehicle navigation. Recently,
the demand for faster and more precise Micro Aerial Vehicle
(MAV) platforms has put even more attention on it. To
safely execute aggressive maneuvers in unknown scenarios,
the MAVs need a robust obstacle detection procedure.

Most fruitful approaches rely on range sensors, such as
laser-scanner, stereo cameras of RGB-D cameras [1], (2],
{3} to build 3D maps and compute obstacle-free trajecto-
ries. However, their use resalts in an incrcased weight and
power consumption, which is unfeasible for small MAVs.
Furthermore, their sensing range is cither limited by device
characteristics (RGB-D and lasers) or by camera baselines
{stereo cameras).
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Fig. 1: Overview of the proposed system: the archilecure is com-
posed by (wo networks that perform different, but connected lasks:
obstacle detecsion and pixel-wise depth estmation. The two task
arc joindy learned and she femwre extraction layers are in common.
Tlsus, the reselting model has increased accuracy in depth prediction
because of the semantic informution received from the detector. On
the other hand, the detector learns a better representation of obsiacles
through depth estimation.

Monocular Visual SLAM (VSLAM) approaches address the
above limitations by exploiting single camera pose estimation
and 3D map reconstruction {4], {5], [6], [7]. Nevertheless,
these advantages come with costs: the absolute scale is not
observable (which easily resulis in wrong obstacke distance
estimations); they fail to compuie reliable 3D maps on low-
textured envivonments; the 3D map updates are slow with
respect to real-time requiremenis of fast manocuvres, With
cateful tuning. these approaches can be used for obstacle
avoidance.

At the same lime there are other approaches that tackle
ihe problem more specifically. In this respect, a step 1oward
more robust obstacle detection has been made by monocular
depth estimation methods based on Convolutional Neural Net-
works {(CNNs) {8]. [9], [10]. Compared to standard VSLAM
strategies, these works train CNN-based model to quickly
compute depth maps from single image, which allows for fast
trajectory replanning. However, as any dala-driven approach,
these depth models are biased with respect 10 appearance
domains and camera intrinsics. Most of the CNN architectures
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so far proposed address the more general task of pixel-wise
depth prediction and are not specifically devised for obstacle
detection. However, recent works [11} {12] have digressed
from this trail, proposing mukti task network archilectures
to jointly learning depth and soms semantic property of the
images. These waorks show that the muni information is
heneficial 1o both tasks.

Driven by the previous considerations, in this work we
propose a novel CNN architecture that jointly Jearns the lask of
depth estimation and obstacle detection. We aim (o get, at the
same time, the detection speed of CNNs approaches and more
robustness o scale and appearance changes, using the joint
learning of the depth distribution. The combination of these
two tasks gives them mutual advantapes: the depih prediction
branch is informed with object structures, which result in
more robust estimations. On the other hand, the obstacle
detection model exploits the depth information w predict
obstacle distance and bounding boxes more precisely. Our
approach is similar eo {11F and [12], but is specifically devised
for abstacle detection, and nol generic scene understanding, in
order to achieve more robustness to appearance changes. We
show the comparison with these two aforementioned methods
in the experimental part of the work. We demonstrate the
detection and depth estimation effeetiveness of our approach
in both publicly available and brand new seqguences. In these
experiments, we prove the robusiness of the fearned models in
lest scenarios that differ from the training ones with respect
to focal length and appearance. In addition, to demonstrate
the detection advantages of the proposed detection system,
we set up a full navigation avoidance system in a simulatec
environment with 3 MAV that detects obstacles and computes
froe trajectories as it explores the scene.

TI. RELATED WORK

The most straight-forward approaches to obstacte detection
and depth estimation involve RGB-D or stereo cameras. Unfor-
wnately, these sensors suffer from limited range, in particular
stereo systems, that require large baselines to achieve accepl-
able performances {13]. For example, some authors explored
push-broom sterco systems on fixed-wing, high speed MAVs
[14]. However, these approaches require too large baselines
for small rotary wing MAVs. In addition, while short-range
estimations still allows safe collision avoidance, it sets an
upper bound to the robot’s maximum operative speed. For
all these reasons the siudy of alternative systems based on
monocular cameras becomes relevant. Even with the limitation
of monocular vision, our method can detect and localize
obstackes up 10 20 meters and compute dense depth maps up
1o 40 meters with a minor payload and space consumplion.

Monocular obstacle detection can be achieved by dense
3D map reconstruction via SLAM or Structure from Motion
(SFM) based procedures [6], {15], [ 16]. These systems perform
# much more complex task though, and usually fail at high
speeds, since they reconstruct the environment from frame
10 frame triangulation. In addition, with standard geometric
monocuiar systems it is not possible to recover the abscinle
scale of the objects, without using additional information. In
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[17] the scale is Tecovered using the knowledge of the camera
height from the ground plane, while [18] uses a inference
based method on the average size of objects that frequenily
appear in the images (c.g. cars), then optimize © the whole
trajectory. The lack of knowledge of the scale makes the
obstacle avoidance a difficult task. For this reason, some
approaches exploit optical information to detect proximity of
obstacles from camera, or, similarly, detect traversable space,
or use hand-crafied image features {£97, {20, {21, [22]. {23].

However, recently proposed deep learming-based solutions
have shown robustngss (o the aforementioned issucs. These
models produce a dense 3D representation of the environ-
ment from a single image, exploiting the knowledge acquired
through training on large labeled datasets, both real-world and
synthetic [241, [8], [25], 9] A few of these methods have
been recenily tested in obstacle detection and astonomous
flight applications. In [26], the authors fine-tune on a self-
collected dataset the depth estimation mode! proposed by [24]
and use it for path plansing. In [10} the authors exploit depth
and normals estimations of a deep model presented in 8]
as an intermediate siep to train an visual reactive obsiucle
avoidance system. More recently, [10] proposed a similar
approach, regressing avoidance paths directly from moracalar
3D depth maps.

However, the aforementioned methods solve the task of
depth estimation and from it derive the obstacle map. Another
set of approaches use semantic knowledpe to strengthen the
detection task. On this tine the works of [27], {H] and [12]
train a multi task architecture for semantic scene understanding
that is reinforced by the joint lcarning of a depth estimalion
task., However, these methods show betier performances on
chasses such as “ground” or “sky”. Qur intuition is that current
depth estimators overfit their predictions on these classes,
as they tend to have more regular texmre and geometric
stractzres. On the contrary, in robolic applications we want
to train detection models 1o be as accurate as possible when
estimating obstacle distances.

Following this multi task approaches, we proppse a novel
solution to the problem by jointly training a model for depth
estimation and obstacle detectior, While each lask’s onlput
comes from independent branches of the network, feature
extraction from their common RGEB input #s shared for both
targets. This choice improves both depth and detection es-
timations compared to single task models, as shown in the
experiments. An approach similar to ouwrs, applied to 3D
bournding box detection, is presented in [28], where the authors
train a three-toss model, sharing the feature exiraction fayers
between the tasks.

In our system the obstacles bounding box regression pan
is obtained modifying the architecture of [29] making it
fulty convolational. This allows for multiple bounding hox
predictions with a single forward pass. In addition, we also
ask the obstacle detector 10 regress the average depth and the
corresponding estimate variance of the detected obstacles.

Depth estimation is devised following the architecture of
[9], improved by taking into account the obstacle detection
branch. In particular, we correct the depth predictions by using
the mean depth estimates computed by the obstacle detec-
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tion branch to achieve robustness with respect 10 appearance
changes. We prove the bencfits of this strategy by validating
the maodet in test sequences with different focal length and
scene appearance. We compare our method to the ones of [11]
and {12], showing a considerable increase of performances
over these wo baselines.

1il. NETWORK OVERVIEW

Qur proposed network is depicied in Figure 2. Given an
256 x 160 RGB input, featwres are extracted with a fine-
tuned version of the VGGI9 network pruned of its fully
connected layers {30} VGG19 weighis are initialized on the
image classification task on the ImageNet dataset, Features are
then fed to two, task-dependent branches: a depth prediction
branch and a obsiacle detector branch. The former is composed
by 4 upconvolution layers and a final convolution layer which
outputs the predicted depth at original input resolution. This
branch, plus the VGGI9 feature extraclor, is equivalent 10
the fully convolutional network proposed in {9]. We oprimize
depth prediction on the following loss:

1 1
Ldsepen == 2 di — W(Eﬁ: di)*

{H
1 ,
+ o gfvxu,- + VDN,

where d; = logl) — lbog 127, D; and D} are respectively
the predicted and pround truth depths at pixel 4, V] is the
ground truth 3D surface normat, and YV Dy, VD are the
horizontal and vertical predicted depth gradients. While the
first two terms correspond to the scale invariant log RMSE
loss introduced in [24], the third term enforces orthogonality
between predicted gradients and ground truth normals, aiming
at preserving geometrical coberence. With respect to the loss
proposed in [8], that introduced a L2 penalty on gradiensts
to the scale invariant loss, our Ioss performs comparably in
prefiminary fesis.

The obstacle detection branch is composed by 9 convolu-
tional layer with Glorot initiatization. The detection methodol-
ogy is similar to the one presented in [29]: the input image is
divided into a 8% b grid of square-shaped ceHs of size 32x 32
pixels. For each celi, we train a detector (o estimale:

« The (x,y) coordinates of the bounding box center

+ The bounding box width w and height &

« A confidence scare O

» The average distance of the detected obstacle from the
camera m and the variance of its depth distribution »

The resulting output has a 40 x 7 shape. AL test lime, we
consider only predictions with a confidence score over a

certain threshold. We train the detector on the following loss:

N
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where we et Apgrg = 0.25, Aaps = 5.0, dugony = (LOB,
Amean = L5, Apar = 1.25. Our network is trained simul-
taneously on both tasks. Gradients computed by each loss
are backpropagated through thelr respective branches and the
shared VGG19 multi-task featurs extractor.

A. Explaiting detection te correct global scale estimaiions

The absolute scale of a depth estimation is not observable
from a single image. However, leasning-based depth estima-
wrs are able © give an accurate guess of the scale under
certain conditions. While training, these models implicitly
learn domain-specific object preportions and appearances. This
helps the estimation process in giving depth maps with correct
absolute scale. As the relations between object proportions and
globat scale in the image strongly depend on camera focal
length, al test time the abscluie scale estimation are strongly
biased towards the training set domain and its intrinsics, For
these reasons, when ohject proportions and/or camers param-
eters change from training o test, scale estimates quickly
degrade. Nonetheless, if object proportions stay roughly the
same and only camera intrinsics are altered at test time, it
is possible 1o employ some recovery sirategy. I the size
of a given object s known, we can analytically compule
its distance from the camera and recover the global scale
for the whole depth map. For this reason, we suppose that
the obstacle detection branch can help recovering the global
scale when intrinsics change. We hypothesize that, while
learning o regress obstacles bounding boxes, a detector model
implicitly learns sizes and proportions of objects belonging
the training domain. We can then eviluate estimated obstacle
distances from the detection branch and use them as a tool
o correct dense depth estimations. Let my; be the average
distance of the obstacle § computed by the detector, D; the
average depth estimation within the 7-th obstacle bounding
box, 12, the number of estimated obstacies, then we compuie
the corrcction factor £ as:

Lo
== 3 LTy

e My S 4

k== e D )
N, e

Finally, we caleulate the corrected depth at each pixel { as
D; = kD;. To validate our hypothesis, in Section IV-C we
test on target domains with camera focal lengths that differ
from the one used for training.
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Fig. 2: Architecture of 1-MOD®. Given an RGB inpur, features are extricied by the VGGI9 madsic and then fed into the depth estimation
and obstacle deteciion branches 1o produce dense depth maps and osbtacles bounding boxes.

IV, EXPERIMENTS
A. Darasets

1) UnrealDataser: UnrealDataset ts a self-collected syn-
thetic dataset that comprises of more than {00k images and 21
sequences collected in a bunch of highly photorealistic urhan
and forest scenarios with Unreal Engine and the AirSim plugin
[31], which allows us to navigate a simulated MAV inside
any Unreat scenarios. The plugin aiso aliows us to callec
MAV's frontal camers RGB images, ground rruth depth up ©
40} meters and segmentation fabels. Some samples are shown
in Figure 4(a). We postprocess segmentation fabels Lo form
a hinary image depicting only two semantic classes: obstacle
and non-obstacle by filtering these data with corresponding
depth maps, we are finally abie 1o segment obstacles at up to
20 meters from the camerz and get ground truth fabels for the
detection network branch (Fig. 3). MAV's frontal camera has
a horizonial field of view of 81.5 degrees.

Depth Ground Truth

Obstacles

Training lmage
Ground Trth

:I; &0
Obstacle Segmentation
Fig. 3. Given depth and segimeniation ground truth, we compute
obstacle bounding boxes for each training image. We evaluate only
obstacles in a 20 meters range.

2) Zurich Forest Dataser: Zurich Forest Datasel consist of
9846 real-world grayscale images collected with a hand-held
sterec camera 1ig in a forest area. Ground truth depth maps
are obtained for the whole dataset through semi-global steveo
matching [32), We manuvally draw 3357 bounding boxes on
a subset of 64 images to provide obstacie ground truth and
evaluate detection in a real-workd scenario.

B. Training and testing details
As baselines, we compare I-MOD? with:
» The depth estimation method proposed in [9].

+ Our implementation of the multi-scale Eigen's modet [R].

« A simple obstacle detector, consisting of eur proposed
model, trained without the depth estimation branch.

« Qur implementation of the multi-modal auwoencoder
(later referred as Full-MAE) proposed by Cadena et al.
F1].

+ Qur implementation of the joint refinement network (later
relerred as JRN) proposed by Jafari et al. [12]).

We train J-MOD? and all the baseline models on 19 sequences
of the UnrealDataset. We left out sequences 0% and 14 for
iesting. All the approaches have been Irained on a single
NVIDIA Titan X GPU. Training is performed with Adam
optimizer by seuting & learning rate of 0.0001 until conver-
gence, The segmentation tasks for the Full-MAE and the JRN
baselines are trained to classify two classes: “obstacle”™ and
"not abstacle”, The JRN is trained to fuse and refine depth
eslimmations from our implementation of [8] with segmentation
estimates from the SotA segmeniation algorithm of Long et
al. {33}, as suggested by the anthors, with the lauer retrained
on the 2-class segmentation problem of the UnrealDalaset.

At test time, all baseline methods are tested using only RGB
inputs. For both methods, we then infer obstacle bounding
boxes from their depth and segmentation estimates applying
the same procedure described in Figure 3, allowing direct
comparison with our method. All the approaches are tested
on the test sequences of the UnrealDataset and on the whole
Zurich Forest Dataset. Note that, while testing on the latler,
we go not perform any finetaning for both our methed and
the baselines.

At runtime, estimations require ahout 0.01 seconds per
frame on a NVIDIA Titan X GPU., We also test -MOD? on
a NVIDIA TX1 board, 10 evaluate its poriability on a on-
hoard embedded system, measuring an average forward time
of aboul 0.28 seconds per frame. The code for I-MOD? and
all the baseline methods is available online’

To cvalmate the depth estimator branch perfermance, we
compute the following metrics:

» Linear RMSE and Scale Invariani Log RMSE (3 5~ ff —~
A:(3, d1)?, with di = log: — 0§ y;) on the [ull depth
milp.

thup-ifisaranipe Hfindex.ghploption=com_content& view=aricle&id=47&
catid=1&liemid=188
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(&Y RGB foput

{b) Depth GT

{c) Deph Estimatior

{d) Obstacle GT
Fig. 4: 1-MOD? qualitative results on the HnrealDataset,

{2} Detected Obstacies

BEPTH [9] DETECTOR EIGEN [8] FULL-MAL [11] JEN [12) TN0D7

RMSE Faff Depth Map 34653 - 3785 7.560 1242 413 Lower

Sednv RMSE Full Depth Map 0042 0.043 134 D.LIG G036 is
Depth RMSE nn Obsd MeanfVark LA ITM - 1854 1 5071 5355018067 2038 7 §7.598 1634 / 29.583 better

Detection RMSE on Obs.(Mean/Yar) - 2319 59.807 - - - 1754 7 de i

Digtection 10U % I25% 44,194 65585 Higher

Detection Precision TR 13534 AT 78.645; 1%
Detersion Recall 05%: 44 38% 49.55% BB hetler

TABLE I Resulis on the UnreaiDutaset. For the depth estimation task we report full depth map RMSE nad scale invariam errors, obstacle-
wise depth and detection branches statistics {meanfvariance) estimation ersors and detector’s 10U, precision and recail,

« Depth RMSE on Obstacles (Mean/Variance): For each
ground truth obstacle, we compute its depth staitstics
{mean and variance) and we compare them against the
estimated ones by using linear RMSE.

For ihe detector branch, we compate the following metrics:

« Detection RMSE on Obsiacles (Mean/Variance):For each
detected obsiacle, we compare its estimated obstacle
depth statistics (mean and variance) with the closest
obstacle ones by using linear RMSE.

« Intersection Over Union {$OU}

+ Precision and Recall,

C. Test on UnrealDataset

We report results on Table I For [9} and [B] we report
results only on depth-related metrics, as they do not perform
any detection. Resalts confirm how J-MOD? outperforms all
the other basclines in alf metrics, corroborating our stasting
claim: object structures leamed by the detector branch improve
obstacies depth estimations of the depth branch. At the same
time, focalization and accuracy of the detected bounding boxes
imprave significantly compared to our single-task obstacle
delector. We achieve good performances on both wrban and
forest sequences, without any significant discrepancy due fo
different depicted objects and contexts. We report qualitalive
resufts on Figure 4. According to the results on the NYU
benchmark reported in [§2], we expect JRN to cutperform [8]
on depth metrics, but this is aot observed in this experiment.
OQur intuition is that the JRN scgmentation network deals
with a more challenging scenario, since the labels to the
different objects are simply “obstacle™, “not-obstacle” while
in the original NYU there were specific labels for each object
category. This makes this task for JRN similar to a semi-
supervised learning problem, that is implicitly more difficult.
Our sysiem relies on a obstacle detector, that is a much simpler
task 1o train, and therefore has an edge in this scenario.

To validate our proposed depth correction sirategy intro-
duced in Section HI-A, we also simulate focal fength alter-
alions by cropping and upsampiing a central region of the
input images of the UnrealDataset, We evaluate performances
on different sized crops of images on the sequence-20, one of
the training sequences, comprising of more than 7700 images.
We choose (o stage this experiment on a training sequence
(0 minimize appearance-induced error and make evident the
focal-length-induced eror. We report results on Table 1L
When no crop is applied, camera intrinsics are unaltered
and appearance-induced error is very low, as expected. As
correction is applied lineacly on the whole depth map, when
scale-dependant crror is absent or fow, such correction worsen
estimations by 19% on non-cropped images. & 230x 144 crop
simubates a slightly longer focal length. All metries worsen,
as expected, and correction still cause a 15% higher RMSE
error. When 204 x 128 erops are evaluated, correction starts to
be cifective, improving performances by 1, 45% with respect
to the non-corrected estimation, On 154 x 96 crops, correction
leads to a 23% improvement. On 128 x 80 crops. correction
improves performance by 25%. We also observe how the
detection branch outperforms the deplh estimation branch on
cbstacle distance evajuation as we apply wider crops to the
input. This results uphold our hypothesis that detection branch
is more robust to Jarge mismatches between training and test
camera focal lengths and can be used to partially compensate
the induced absolute scale estimation deterioration.

D, Test: Zurich Forest Dataset

In this experiment we test our models, trained on syn-
thetically generated data, on a real world scenario without
performing any finetuning, to verify the generalization capa-
bilities of the models when tested on unseen domains. Depth
metrics (Linear RMSE and Scale Invariant MSE) refer to the
whaole dataset, while ali the other metrics refer to the fabelled
subset, as described in Section IV-A2. Results sre reported
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ORIGINAL SIZE | CROP 230% 134 T CROP 38X 128 TROP 133%06 CROP 128580

RNoLor Cor FolCor | Lor | mokox ] Lor | Nofer | o Noter | tor

RMSE Full Depth Map 1178 1113 TeAr | Im 4052 1 491 E98 1 623 | 10825 | BMS

5S¢, v RMSE Full Peprh Map 1098 0.115 4121 O3 | 0173 ] G184 | 0274 0217 | 0305 | G.IS0

Deptf: RMSE oa Obs.(Mean) G185 0675 1.293 1.458 2.465 201 | 4865 § A88% | 46148 1 4485
Datecior KISk on (s Meant 0.404 1679 1.998 1,124 5,450

TABLE H: Resuits of I-MOD? on the sequence-20 of the UnrealDataset on different-sized central crops, For each crop, we report in bold
the better estimation between unchanged (labeled as NoCor) and corrected depths (labeled as WithCor).

{ay RGB nput {b) Depth GT

timaticn

(¢} Non Comected Bepth Ts-{d) Corrected Depth Gstima

{&z) Detecied Obsracles
tion

Fig. 5; )-MOD* qualitative results on the Zurich Forest Dataset,

DEPTH [9) DETECTOR FIGEN [§} FULL-MAE [11} IRN [12] JAOD”

Tuor | MeCer | Cor | MoCor | Cor | MeCor | Uor Nolnr Tor ] MoLOr Cor Nolor

RMSE E 12431 - . - 14640 | - - 17.581 - fO0T4 | 9009 [ 15569 |
Se. lnw RMSE 0873 - 1025 1.711 0.0z 0429 | 0.954
Blepth RMSE on Obs.Mean)” 4,378 - . B.060 19,4188 4783 1 4310 ] 4847
Detector RMSE oa Obs.iMeant” . 6277 - - T2

Dieteeror (GU* 11.4% ER K- 9.19% 26.32%
Dietector Pracision™ 2333% A% i3.18% 48367
Betector Reeail” 10 80% 2% 0.72% 239

TFABLE 1L Results on the Zurich Forest Dataset. Metrics marked with 2 * symbol are evatuated on a subser of 64 images with ground

truth bounding boxes,

on Table HI. J-MOD? outperforms ail baselines in almost all
metrics, which seggests improved generalization capabilities.
Furthermore, we show how the correction factor introduced
in Section HI-A improves J-MOD? depih estimation by about
28%% on the RMSE metric, reducing the scale-induced errors
on the estimates caused by the different camera parameters.
We report gualitative vesulis on Figure 5. The performance of
all the approaches are lower with respect to the UnreaiDataset.
This is expected, since the synthetic textures and general
appearance are different from the ones in this dataser. In
addition. the camera characteristics do not match the ones of
the UnrealDataset sequences.

E. QOualitarive analysis of the nudti-task interaction

Besides the advantages given by J-MOD? in terms of nu-
merical performance, in the following, we qualitatively discuss
the benefits of our joint architecture compared (o its single task
couanterparts.

Figure 6 shows a comparison between the estimated obstacle
bounding boxes of the detector-only architeclure and the
J-MOD? ones. It can be observed that, by exploiting the
anxiliary depth estimation task. 3-MOD? leams a detector that
is aware of scene geometry. This results in an architecture that
modeis a better concept of obstacie and, thus, is more precise
in detecting what really determines a threat for the robot
Hence, it avoids wrong detections, such as ground surfaces

{a) Single-1nxk detector (b} ;-MOD?

(d) -MODR

{c) Single-task detecior

Fig. G: Tor each row, we compare I-MOD® obstacle detections
wirh the detector-only architeetare, Ground truth bounding boxes are
reported in green, predictions in red. In the first example (first row),
the single-ask detector erroncously detects a false cbstacle on the
ground. Simiarly, in the second example (second row), the single-
task wrongly considers the whole buiiding on the left as an obstacle
while anly its closest part is an immediase threal for rabol navigation.

(see Figures 6(a) and 6(b}), or full buildings of which only
the closest part would constitutes an immediate danger for
navigaiion (sce Figures 6(c) and 6{d)).
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{a) ROB jmage (D) Depth GT (c) Pepih-only (d) .l-!'L‘iOl'.]2

th} 1-M0D%

{e) ROB image  (f} Depth GT (g) Pepih-only

Fig. 7: For each row, we compare J- MOD? depth maps with the ones
predicted by the depth-oniy architecture. §- MOD® estimations are
sharper and more defined. Consider, for example, the hollard and 1he
lamppest in Figures 7{a)-T(d) or the ground surface in Figures 7(e)-
T(h), whose depth is wroagly estimate by the depth-only estimator,

Similarly, depth estimation branch of the proposed }-MOD?
approach takes advantage from the ebstacle detector task to
refine the estimalion of the scene geomelry. The represemtation
learned by the J-MOD? depth estimation stream contains also
visual clues aboul object shapes and proportions, which gives
it the capability to integrate object semantics when estimating
the scene depths, Compared to the depth-only architcclure
[9], our approach predicts sharper and more precise depth
maps. This is more evident if we consider very thin elements
and objects that could be misiaken for ground surfaces (e.g.
consider the lamppost and the bollard in Figures T(a)7(d) or
the ground estimates in Figures 7(e)7{h)).

F. Navigation experiments

We further validate J-MOD? effectivness for obstacle de-
tection applications by setting up a simulated full MAV navi-
gation system. We depict the system architecture in Figure 8.
We create a virtual forest scenario on Unreal Engine, shightly
different from the one used for dataset coliection. The line-
of-sight distance between the takeoff point and the designed
landing goal is about 61 meters, Trees are about G meters all
and spaced 7 meters from each other, on average. An aerial
picture of the test scenario is reported in Figure 8,

A simalated MAV is able to navigate into the scenario and
collect RGB images from its frontal camera. We estimate depth
from the capwred input and we employ it to dyvamically
build and update an Octomap {34]. We plan obstacle-free
trajectories exploiting an off-the sheif implementation of Lthe
RRT-Connect planner [35] from the Movelt! ROS library,
which we vse to pilot the simulated MAV ai a cruise speed
of lm/s. Trajectories are bounded to a maximam altitude of
5 melers. As & new obsiacle is detected along the planned
trajectory, the MAV stops and a new frajectory is compuled.
The goal point is set 4 meters above the ground. For each
flight, we verify its success and measure the flight distance
and duration. A fight fails if the MAV crashes or gets stuck,
namely not completing its mission in 2 5 minuge interval. We
compare 3-MOD? with the Eigen's baseline, both trained on
the UnreaiDataset.

While planning, we add a safety padding on each Octomap
obstacies. This enforces the planner L0 compute trajectories
not 1o close to the detecied obstacies. For gach estimator, we
set this value equal the average RMSE obstacle depth error on

the UnrealDataset test set, as reported in Table 1: 1.034 meters
for 1-MOD?2, 1.854 meters for Eigen, We refer to this valse
as a relishility mcasure of each estimator; the less accurate
an estimator is, the more padding we need 10 puarantee safe
operation. We perform 135 Rights for each depth esiimator and
report their results on Table IV.

EJGEN {8] 3-MOD-
Success e 6,6% Th%
Faillure cases 8 stuck /3 erash | 2 stuck /2 cash
Avg. flight tme 197s (i1
1. Dev. Flight Time H8.51% §2.58s
Avg. Might disiance F8m Tim
Sed, Brev. Flight Distanee 4.4Tm 9.95m

TABLE 1V: Results of the navigation experiment. We compare the
navigaion success rate when using J- MOD? and Eigen's approach
as cbstacle detection systems.

I-MOD? clearly performs better in all metrics, proving that
how our methad is effective for monocular obstacle detection,
By analyzing fuilure cases, for & times the MAV using Eigen
as obstacle detector got stuck in the proximity of goal point
because ground was estimated closer than Hs real distance,
causing planper faifvre in finding an obstacte-free trajectory
o the goal. I-MOD? failures are mostly related on erratic
trajectory computation which cansed the MAVY to fly 100 close
o obstacles, causing lateral collisions or getting stuck in
proximity of tree’s Jeaves.

V. CONCLUSION AND FUTURE WORR

Tn this work, we proposed J-MOD?, a novel end-to-end deep
architecture for joiné obstacle detection and depth estimation.
We demonstrated its effeciiveness in detecting obstacles on
synthetic and reab-world datasets, We tested its robustness (0
appearance and camera focal length changes. Furthermore, we
deployed J-MOD? as an obstacle detector and 3D mapping
maodule in a full MAV pavigation system and we tested it on
a highty photo-realistic simulated forest scenario. We showed
how J-MOD? dramatically improves mapping quality in a
previcusly unknown scenario, feading o a substantial lower
navigation fatlure rate than other SotA depth eslimators. In
foture works, we plan to further improve robustness over
appearance changes, as this is the major challenge for the
effective deployment of these algorithms in proctical real-
world scenarios.
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1.S-VO: Learning Dense Optical Subspace for
Robust Visual Odometry Estimation

Gabriele Costante™! and Thomas A. Ciarfuglial"!

Abstract—This work proposes a novel deep nefwork archi-
tecture to solve the camera Ego-Motion esiimation problem.
A motion estimation network generally learns featores similar
to Optical Flow (OF) Helds starting from sequences of images.
This OF cant be described by a lower dimensional latent space.
Previous research has shown how to find fincar approximations
of this space. We propuse fo use an Awte-Encader network to find
a pon-lineuy representation of the OF manifold. In addition, we
propose to learn the latent space jointly with the estimation task,
so that the leartied OF featires become a move robust deseription
of the OF inpul. We call this novel architecture Latent Space
Visnal Odometry (LS-VO). The experiments show that 1L5.VO
achieves & considerable inerease in performances with respect
to baselines, while the pumber of parameters of the estimation
netwerk only slightly increases,

Index Terms—Computer Vision for Transporfation, Deep
Learning in Robofics and Automation, Visead Learning, Visual-
Based Navigation

I. INTRODUCTION

Earning based Visual Odometry (L-VQ) in the last few

vears has seen an increasing attention of the robotics
community becanse of its desirable properties of robustness
fo jmage moise and camera calibration independence [H,
mostly thanks to Convolutionat Neural Networks (CNNs) rep-
resentational power, which can complement current geometric
solutions [2]. While current resulis are very promising, making
these solutions easily applicable to different environments
still presents challenges. Onc of them is that most of the
approaches so far cxplored have not shown strong domain
independence and suffer from high dataset bias, iec. the
performances considerably degrade when tested on sequences
with motion dynamics and scene depth significantly different
from she training data [3]. In the context of L-VO this bias is
expressed in different Optical Flow {(OF) field distribution in
traiping and test data, due to differences in scene depth and
general motion of the camera sensor.

One possible explanation for the peor performances of
learned methods o unseen contexts is that most current leam-
ing architectures try to extract both visual features and motion
estimate as a single training problem, coupling the appearance
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Fig. |: Overview of the melthod: We propose a neiwork architecture
that jointly learn a lateni space representation of the Opticat Flow
field and estimates motion. The joint Jearning makes the estimation
meare robust to input domain changes, The latent representation is an
inpus to the estimation network together with the lower levet features,

and scene depth with the acteal camera motion informatien
contained in the OF inpui. Some works have addressed the
problem with an unsupervised, or semi-supervised approach,
trying lo learn directly the motion representation and scene
depth from some kind of frame-to-frame photometric error
[4] {5] [6]. While very promising, Lhese approaches are mainly
devised for scene depth estimation and still [all short in terms
of general performances an Ego-Motion estimation,

At the same time, previous research has shown how OF
fizlds have a bilincar dependence oa motion and inverse scene
depth [7]. We suggest that this is the main reason for the tow
generalization properties shown by learned aigorithms so far.
Past research has shown that Lhe high dimensional OF field,
when scene depth can be considered locally constant, can be
projected on a much fower dimensional Hnear space I8} [91.
However, when these conditions do not hold, the OF field
subspace exists but is highly non-linear.

In this work we propose 1o exploit this knowledge, esti-
mating the fatest OF representation using an Auto-Encoder
{AE) Neural Network architecture as a non-linedr subspace
approximator, AE networks are able to extract laient variable
represemiation aof high dimensional inputs. Since our aim is
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1o make the Ego-Motion estimation more robust to OF fields
that show high variability in their distribution, we do not
simply use this subspace to directly produce motion prediction.
Instead, we propose a novel architecture that jointly trains the
subspace estimation and Ego-Motion cstimation so thal the
two network tasks are mutually reinforcing and at the same
time able to better generalize OF field representation. The
conceptual archilecture is shown in Figure 1. To demonstrate
the increased performances and reduced dataset bias with
respect to high dynamicat variation of the QF field. we test
the proposed approach on a challenging seenario. We sub-
sampie the datasets, producing sequences that simulate high
speed variations, then we train and (est on sequences that are
both different in appearance and sub-sampling rate.

II. RELATED WORKS
A. Ego-Motion estimation

1) Geometric Visual Odometry: G-VO has a long history
of solutions. While the first approaches were based on sparse
feature tracking, mainly for computational reasons, nowa-
days direct or semi-direct approaches are preferred. These
approaches use the photometric error as an optimization ab-
jective. Research on this topic is very active. Engel at al
developed one ol the most succesful direct approaches, LSD
SLAM, both for monocular and stereoscopic cameras [10],
{11}, Forster €t al, developed the Semi-Direct VO (3V0) [12]
and iis more recent update [13], which is a direct method but
wracks only a subset of features on the image and runs at very
high frame rate compared to full direct methods. Even if direct
methods hiave gained most of the attention in the last few years,
the ORB-8LAM algorithm by Mur-Artal et al. [{4] reverted
1o sparse feature tracking and reached impressive robustness
and accoracy comparable with direct approaches.

2) Learned Visual Odometry: Learncd approaches go back
to the early explerations by Roberts et al. [8], [15], Guizilini et
al. [16], [17], and Ciarfuglia et al. [18]. As for the geometric
case, the initial proposal focused on sparse OF features thal,
faithful w0 the there's no free lunch theorem, explored the
performances of different learning algorithms such as SVMs,
Gaussian Processes and others. While these early approaches
already showed some of the strengths of L-VO, it was only
more recently, when Costante et al. {1} introduced the vse
of CNNs for feature extraction from dense optical flow, that
the learned methods started to attract more inlerest. Since
then a couple of methods have been proposed. Muller and
Savakis [19] added the FlowNet architecture to the estimation
network, producing one of the first end-to-end approaches,
Clask et al. {201 proposed an end-10-end approach that merged
camera inputs with IMU readings vsing an LSTM network.
Through this sensor fusion, the resulting algorithm is able
to give good results bul requires sensors other than a single
monocular camera. The use of LSTM is further explored by
Wang et al. in [21], this time withoul any sensor fusion. The
resulting architecture gives again good performances on KITTI
sequences but does not show any experiments on environments
with different appearance from the training sequences, On
a different track is the work of Pillai et al. {22], that, like

[t7], Tooked at the problem as a gencrative probabilistic
problem. Pillai proposes an architecture based on an MDN
network and a Variational Auto-Encoder (VAE) to estimate
the motion density given the OF inpuis as a GMM. While
Frame to Frame (F2F) performances are on a par with other
approaches, they also intreduce a Foss term on the whole
trajectory that mimics the bundle optimization thut is often
used in G-VO. The results of the complete system are thus
very good. However, they use as input sparse KLT optical
flow, since the joint density estimation for dense OF would
become compulationally intractable, meaning that they could
be more prone to OF noise than dense methods.

Most of the described approaches claim independence from
camera parameters. While this is true, we note that this
is more an intrinsic feature of the learning approach than
the merit of a particular architecture. The learned maodel
implicitly fearns also the camera parameters, but then it fuils
on images collecled with other camera optics. This parameter
gencralization issue remains an open problem for E-VO.

B. Semi-supervised Approaches

Since dataset bias and donmain independence are critical
chaltenges for L-VQ, it is not surprising that a number of
unsupervised and semi-supervised methods have beer recently
proposed. However, all the architectures have been proposed as
a way of solving the more general problem of joint scene deplh
and motion estimation, and molion estimation is considerad
more as a way of improving depth estimation. Konda and
Memisevich {23] used a stereo pair 10 learn VO but the archi-
tecture was conceived only for stereo cameras. Ummenhofer
and Zhou [4] propose the DeMoN architecture, & sofution for
F2F Strocture from Motion (SIM) that trains a network end-
io-end on image pairs, levering motion paraliax. Zhou ¢t al.
[5} proposed an end-to-end unsupervised system based on a
toss that minimizes image warping error from one frame o
the next. A similar approach is used by Vijayanarasimban et
al. [6} with their SEM-Ner.

All these approaches are devised mainly for depth esti-
mation and the authors give little or no atiention (0 the
performances on VO tasks. Nonetheless, the semi-supervised
approach is one of the more relevant future directions for
achieving domain independence for L-VO, and we expect that
this approach will be integrated in the current research on this
topic.,

C. Optical Flow Latent Space Estimation

The semi-supervised approaches described in Section 1I-B
make evident an intrinsic aspect of monocular camera motion
estimation, that is, even when the scene i3 swatic, the OF
field depends both on camera motion and scene depth. This
relationship between inverse depth and motion is bilinear and
welt known [24] and is at the root of scale ambiguily in
monocular VO, However, locally and under certain hypothesis
of depth regularity, it is possible to express the OF field
in terms of a lincar subspace of OF basis veciors. Roberts
et al. [15] used Probabilistic-PCA (o Jearn a lower dimen-
sional dense OF subspace without supervision, then used it
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to compute dense OF templates starting from sparse optical
flow. They theo used it to compute Ego-Motion. Herdtweck
and Crisiobal extended the resalt and used Expert Systems
to estimate motion [25]. More recently, a simifar approach
to OF field computation was proposed by Wulff and Black
[9] that complemented the PCA with MRE while Ochs et al.
[26}] did the same by including prior knowledge with an MAP
approach, These methods suggest that OF field, which is an
intrinsically kigh dimensional space generated from a non-
linear process, lies on an ideal lower dimensional manitold
that sometimes can be linearly locally approximated. However,
modern deep networks are able to find latent representation of
high dimensional image inpuis, and in this work we use this
infuition o expiore this OF Jatent space estimation.

III. CONTRIBUTION

Inspired by the early work of Roberts on OF subspaces {7].
and by recent advances in deep latent space learning [27], we
propose a neswork architectore that jointly estimates 2 low
dimensional representation of dense OF field using an Auto-
Encoder {AE) and at the same time compuies the camera Ego-
Motion estirnate with a standard Convolutional setwork, as in
{1} The two networks share the feature representation in the
decoder part of the AE, and this constrains the training process
to learn features that are compatible with a general latent
subspace. We show through experiments that this joint tzaining
increases the Ego-Motion estimation performances and gener-
alization properties. In particular, we show that learning the
latent space and concatenating it to the fealure vector makes
the resulting estimation considerably more robust (o domain
change, both in appearance and in OF figld dynamical range
and distribution.

We train our network both in an end-to-end version, using
deep OF estimation, and with standard OF field inpui. in
order to explore the relative advantages and weaknesses. We
show that while the end-tv-end approach is more general,
precompuied OF still has some performance advantages.

In summary our comdributions are:

« A novel end-to-end architecture to joinily learn the OF
latent space and camera Ego-Mation estimation is pro-
posed. We call this architecture Latent Space-VO (LS-
Vo).

+ The strength of the proposed architecture is demonstrated
experimentally, both for appearance changes, blur, and
large camera speed changes.

» Effects of geomeiricatly computed OF fields are com-
pared 10 end-to-end architectures in all cases.

» The adaptability of the proposed approach to other end-
to-end architectures is demonstrated, without increasing
the chances of overfitting them, due to parameters in-
CTeasE.

IV. LEARNING OPTICAL FLOW SUBSPACES
Given an optical flow vector u = (]}, ul)7? from a given
QF field x, [7} [0} approximale it with 2 linear relationship:
!
u s Wz = Z Wi

i=1

(1

where the cotumns of W are the basis vectors that form the
OF Hnear subspace and 2 is a vector of latent variables. This
approximation is valid only if there are some regularities of
scene depth and is applicable only to local patches in the
image. The real subspace is non-linear in nawre and, in this
work, we express it as a generic function u = D(z) that
we learn from data by using the architecwre described in the
foHowing,

A. Latent Space Extimation with Auto-Encoder Neiworks

Let v € RS be the camera motion vector and X £ R2wh

the input OF field, computed with some dense method, where
X5y = Ugg) is a 2-dimensional vector of the field at
image coordinates {,7). Both can be viewed as random
variables with their own distributions. In partictlar, we make
the hypothesis that the input images lie on a lower dimensional
manifold, as in {28], and thus alse the OF ficld lies on a lower
dimensional space @ C R**¥** with a distance function
Sl %), where (), x® £ 0. The true manifold is very
difficalt 10 compute, 50 we look for an estimate OO using
the model extracted by an encoding neural network,

Letzc ¥ < Rl « w x h be a vector of latent random
variables that encodes the variabilities of OF ficld that lies on
this approximate space. The decoder part of the AE can be
seen as a function

Dz 64) = D(z; {Wy b Lk=1 K} N

where 8 = ({We, b} b = 1--- K) is the set of learnable
parameters of the network {with &' upconv layers), that is able
to generate a dense optical flow from a vector of fatent vari-
ables z. Note that the AE works similarly 10 a non-linear ver-
sion of PCA [27L We define the set O = {D{z;6,;) | 2z € Y}
a5 our approximation of the OF ficld manifold and use the
logaritmic Euclidean distance (as described in Section IV-B as
a loss function) as an approximation of ${2{z{®), D(z™")).
Using this framework the problem of estimating the latent
space is carried out by the AE network, where the Encoder
part can be defined as the function 2 = E{x; 6.).

While in {22} the AE is used to estimate motion, and 2 are
the camera translation and rolations, here we follow a different
strategy. We compute the latent space for a two-told purpose!
we use the fatent variables as an input feature to the motion
estimation network and we learn this latent space fogether
with the estimator, Oius forcing the estimator to kearn features
compatible with the encoder representation. Together these
two aspecls make the representation more robust 10 domain
changes.

B. Network Architecture

The LS-VO network architecture in its end-to-end form is
shown in Figore 2. It is composed of two main brunches,
one is the AE network and the other is the convolutional
network that computes the regression of motion vector y. The
OF exitaction section is Flownet {29], for which we use the
pre-trained weights. We run tests fine-tuning this part of the
network on KITTI {30] and Malaga |31] datasets, but the result
was a degraded performance due to overfitting,
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Fig. 2; LS-VO network architecture. The shared part is composed of Flownet OF extraction, then three convolutional layers that start the
festure extraction. The last layer of the Encoder, convd, is not shared with the Estimator network. From convd the falent variables are
produced. The Decoder network takes these variables and reconstructs the input, while the Estimator concatenales themn 1o conv3 output.

Then three fuily connected layers praduce the motion estimates.

The next layers are convolutions that extract features from
the computed OF ficld. Afier the first convolutional layers
{convt, conv2 and conv3), the network splits into the AE net-
work and the estimation network. The twe branches share part
of (he feature extraction convolotions, so the entire nerwork is
coastrained in learning a general representation that is good
for estimation and latent variable extraction. The Encoder is
completed by another convolutional tayer, Lhat brings the input
x {0 the desired representation =, and its oulpul is fed both in
the Decoder and concatenated to the fealure exiracted before.
The resulting feature vectar, composed of latent variables and
convolutional featsres is fed into a fully connected network
that performs motion estimation. The details are summarized
in Table L

The AE is trained with a pixel-wise squared Root Mean
Squared Log Error (RMSLE) loss:

Lap= 3 lHlog(a® +1) ~log(u? + i} 3

where (9 js the predicted OF vector for the i-th pixel,
and u? is the corresponding input fo the network, and the
logarithm is intended as an element-wise operation. This loss
penalizes the ratio difference, and not the absolute value
difference of the estimated OF compared to the real one, so
that the flow vectors of distant poinis are taken info account
and not smoothed off,

We use lhe oss introduced by Kendall et al. in [32]:

Len=Y W~ + 516 - 6113 (4

where the T is camera translation vector in meters, 8 is the
rotation vector in Euler notation in radians, and 7 is a scaic
factor that balances the angular and transiationz! errors. 3
has been ¢ross-validaled on the trajeciory reconstruction ersor
{3 = 20 for our experiments), so that the frame w frame crror
prepagation Lo the whole trajectory is taken into account. The
use of a Eoclidean loss with Euler angle representation works
well in the ease of autonomous cars, since the yaw angle is
the only one with significant changes, For more general cases,
is better to use a quaternion distance merric {33].

TABLE T: 1.8-VO and ST-V(Q network architectures

[ Layer name Kerpel size [ Stride | outpot size
fput || - - - {M,3060,3)
L5-VO
Shared conv | T 2w 2 | {47, 150,64
Beaures conv? 5xD T 1 { (4, [0 64
Layer conv3 * Fwd ' d {14, 38, 64)
Auio- convd 3% i 1=1 (12, 38, 64]
Encoder apcony b K] P>l (48, 152, 11)
- crop - - {47, 150, 6)
upconv.2 HER %} {64,300, )
maxpool § FEY 23 6,19, 64)
Extimeatar concal + and T - - [36430;
densel - (10410)
dense? - - (100K}
densed - - (&3]
&T-Vi)
st-conv | Fud Fw | (46,149, 64)
Feuture s-maxpool] & FEE d x4 [ (E.37,0d)
Extraction sl-conv2 F x4 EEX: (%, 345, 20)
sE-maxpooll © T2z PR [, 17720
concat » and - B 27a08) 4
Estination st-dense | - - [EDEND]
st-(fensel - - [

In Section V-B, we compare this architecture botk with SotA
geometrical and fearned metheds. The baseline for the learned
approaches is a Single Task (ST) network, similor to the 1b
network presented in {1}, and described in TFable L

C. OF field distribution

As mentioned in Section IV-A, the OF field has a probability
distribution that lies on a manifold with tower dimensionality
than the number of pixels of the image. We can argue that the
actual density depends on the motion of the camera as much
as the scene depth of the images collected. In this work, we
test generalization properties of the network for both aspects:

i For the appearance we use the standard approach (o test

on completely different sequences than the ones used in
training.

fi For the motion dynamics, we sub-sample the sequences,

thus multiplying the OF dynamics by the sane factor.

iii To further test OF distribution robustness, we also test the

architecture on downsampled blurred images, as in [1].
Examples of the resulting OF field are shown in Figure 3,
while an example of a blurred OF fictd is shown in Figure 4.
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(a} no sub-sampling - 10Hz

() sub-sampling 2 - SHz

{e) sub-sampling 3 - 3.33Hz

Fig. 3: Examples of the OF field intensity due to different sub-
sampling rates of the original sequences. In the left are the OF field
extracted with Brox algorithm (BF) (34]. while on the right the ones
exiracied with Flownet [29]. While the BF ficlds look more erisp, they
require parameier tuning, while the Flownel version s non-parametric
at 1est tme.

(a) Swandard and blarred image

{by Standard and blurred OF field

Fig. 4 Examples of OF fields obtained applying gaussian blur to
image sequences. {a} The image and its blarced variant is shown,
with blur radins FO. ¢b} The corresponding OF fields. Note the huge
change in OF distribution.

In both images there are evident differences both in hue and
saturation, meaning that both modolus and phase of the OF
vectors change.

V. EXPERIMENTAL RESULTS

A. Datq ad Experimenis ser-ip

We perform experiments on two different datasets, the
KITTI Visual Qdometry benchmark [30] and the Malaga 2013
dataset [31]. Both dawsets are taken from cars that travel
in city suburbs and countryside, however the iHumination
conditions and camera setups are different. For the KITTI
dataset we used the sequences 00 to 07 for training and the 08,
(9 and 10 for test, as is common practice. The images are all
around 1240 x 350, and we resize them to 300 x 94. The frame
rate is 10Hz. For the Malaga dataset we use the sequences (02,
03 and D9 as test set, and the 01, 04, 06, 07, D8, 10 and i1 as
training set. In this case the images are 1024 x 768 that we
resize to 224 % 170, The frame rate is 20Hz. For the Malaga
dataset there is no high precision GPS ground truth, so we vse
the ORBSLAM? stereo VO {141 as a Ground truth, since iis
performances, comprising bundte adjustment and ioop ¢losing.
arc much higher than any monocular method,

The networks are implemented in Keras/Tensorfiow and
trained using an Nvidia Titan Xp. Training of the ST-VO
variant takes 65, while L5-VO 274, The ST-VO memery occu-
pancy is on average 460MB. while LS-VO requires 500MB.
At test time, computing Flownet and BF {eatures takes on
average 12.5ms and 1 ms per sample, while the prediction
requires, on average, 2 — 3ms for both ST-VO and 1.5-VO.
The total time, when considering Flownet features, amounts
to t4.5ms for ST-VO and 15.5ms for LS-VO, Hence, we can
observe that the increased complexity does not affect much
computational performance at test time,

For all the experiments described in the following Section,
we tested the LS-VO architecture ard the ST-VO baseline.
Furthermore, on alt KITTI cxperiments we tested with both
Flownet and BF (eatures. While the conteibution of this work
relates mainly on showing the increased tobustness of the
proposed method with respect 1o [learned archilcciures, we
also sampled the performances of SotA geometrical methods,
namely VISO2-M [35] and ORBSLAMZ-M [14] in order 10
have a general baseline.

B, Experimenms

As mentioned in Section [V-C, on both datasets we perform
three kinds of experiments, of increasing difficulty. We observe
that the original sequences show some variabilily in speed,
since the car {ravels in both datasets at speeds of up 10 GOKmv/h,
bui the distrbution of OF field is still limited. This implies
that the possible combinations of linear and rotational speeds
arc limited, We cxiend the variabiiity of OF field distribution
performing some data augmentation, Firstly, we sub-sample
ithe sequences by 2 and 3 times, to generate virtual sequences
that have OF vectors with very different inlensity. In Figure
3, an example of the different dynamics is shown. In both
KETTE and Malaga datasets we indicate the standard sequences
by the dl subscript, and the sequences sub-sampled by 2
and 3 times by 2 and 43, respectively. In addition 1o this,
we generate biurred versions of the d2 test sequences, with
gaussian biur, as in [1]. Then we perform theee kinds of
gxperiment and compare the results. The first is a standard
training and test on di sequences, This kind of test explores
the generalization properties on appearance changes alone. In
the second kind of experiment we train all the networks on
the sequences 1 and d3 and test on d2. This helps us 1o
understand how the networks perform when both appearance
and OF dynamics change. The third expetiment 8 iraining on
A1 and d3 sequences, and testing on the on the blurred versions
of the d2 test set (Figure 4).

‘The proposed architecture is end-te-end, since it computes
the OF field through a Flownet network. However, as a base-
tine, we decided 1o test the performances of 2!l the architecture
on a standard geometrical OF input, computed as in [34], and
indicated as BF in the following.

In addition, we train the BF version on the RGB representa-
tion of OF, since from our experdments performs slightly better
than the floating point ooe.
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[~ ViSOIM [33) ORESCAMZEM [14] TTVO {Flow) SEVD {BF) TSV (Flow} [EV0 (BD)
| Trasl. Rol. Trasl Rol. Trasl. Hol. Trast. Rol. Trask Tot. Trasl. Ral,
REFTTdl i 15.03% | 0Gi93 | 62.71% | D-0068 j| 12.79% | DOSOT | S.08% oSN I0. 1%, | 0.0290 | 6085 | 0.0109
i 2 T5.068% | 0,00890 Tar Tat T 305 | 0.0980 | 5.03%, 1 00360 || 10.85% | 0.0820 | 7-iic { 60205
RITT] 2 + blor 5 T.0588 Taiy [ IR35% 1 0.050% | 16.499% § 04627 || 14477 | o055 | 8.13% § 002710

TABLE II: Performances summary of all methods on the it experiments. The geomewical methods perform beleer on the angular rate
estimation {in deg/m) on both datasets at standard rate, bor usuaily fail on others (foss of tracking). Learned methods are consistent in their
behaviour in all cases: even if the general error increases, they never fail to give an output even in the worst conditions tested, and the

trajeclories are always menningful.

VISOZ-M 139] ORDBSLAMIM 114] || ST-¥0 (Flow) L5-VO {Flow)

Trasl. L Trasi, Roi. Trasl, Rat. “Trasl. Rot.
Malaga d! 13.00% | .0321 | BG.0i% | 0.0156 “ 3350% | 0.1291 | 18.56% | 0.0600
Malaga d2 17.37% | 00530 Fall Tl || 23.35% | 0.1088 | 21.44% | 0.0472
Malaga 2 + blur Fail Tall Fail fal || 25.14% | 0.1262 | 24.00% | 0.0657

TABLE III: Performances summary of all methods on the Malaga experiments. The same considerations of Table 11 apply. In this set of
cxperiments we analysed only the end-io-end archilecwure, for the sike of simplicity.
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Fig. §: Comparison between all methods on KITTE dataser. with
o sequence sub-sampling, h is evident that the LS-VO network
owperforms the ST equivalent, and in the case of the BF OF inputs
it is almost always beticr by a large margin. Geometrical methods
outperform learned ones on angelar rate. ORBSLAM2-M is not
shown in $a and 5b for axis clarity, since the error is greater than
other methods.

¢ Discussion

The experiments described in Section V-C on both datasets
have been evaluated with KITTI devkit [30], and the output
plots have been reported in Figures 5, 6, 7, 8 and 9. In al}
Figures except 7, the upper sub-plots, (a) and (b), represent the
transiational and rotational errors averaged on sub-sequences
of length 100m up to 800m. The lower plols represent the
same errors, but averaged on vehicle speed (Km/h), The
horizontal axis limits for the lower plots, in Figures relative
to d2 downsampled experiments are different, since the sub-
sampling is seen by (he evaluation software as an increase in
vehicte speed. In Table H and 111 the toral average translational
and rotational errors for all the experiments mre reported.
Figure 5 summarises the performances of all methods on
KITTI without frame downsampling. From Figures 5a and
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Fig. 6: Comparison between the four network architectares on KT
J2 dataset. Again. the LS-VO architecwre outperforms the other.
except for speed around 60K m/h,

5b we observe that the BF-fed architectures outperform the
Flownet-fed networks by a good margin. This is expected,
since BF OF ficlds have been tuned on the dataset to be usabie.
while Flownet has not been fine-tuned on KITTI sequences. In
addition, the 1.8-VO networks perform almost always betler
than. or on a par with, the torresponding ST networks, When
we consider Figures 5¢ and 5d, we observe that the increase
in performance from ST 1o LS-VO appears to be slight, cxeept
in the rotational errors for the Flownet architecture. However,
the difference between the kength errors and the speed errors is
coherent if we consider that the errors are averaged. Therefore,
the specd values that are less represented in the dataset are
probably the ones that are more difficult to cstimate, but a
the same time their effect on the generai rajectory estimation
is consequently less important.

The geometrical methods do not work on frame pairs only,
but perform local bundle adjustment and evenually scale
estimation. Even if the comparison is not completely fair
with respect to tearned methods, it is informative nonetheless.
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Fig. 7: KITTI d2 trajectories: Trajectories computed on the sub-sampled sequeaces for all architecmures (42 - 3Hz).
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Fig. 8: Performances of the four architectures on blurred KITT] 42
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Fig. 9 Performances of the end-to-end architccture on blurred
Malaga 2 sequences. The lack of samples at high speed make the
L5-VO network shightly overfit those samples, as shown in 9¢, but
in all other respects the behaviour is similar 1o Figure 8.

In particular we observe (see Figure 5) that the geometrical
methods are able to achieve top performances on angular
estimation, because they work on full-resolution images and
because there is no scale error on angular rate. On the
conerary, on average, they perform sensibly worse than leamed
methods for translational errors. This s aiso expected, since
geometrical methods lack in scale estimation, while learned
methods are able to infer scale from appezrance, Simifar
resulis are obtained for the Malaga dataset. The complete set
of experiments is available enline {36}

When we consider the second type of experiment. we expect
that the pencral performances of all the architeclores and
methods should decrease, since the task is more challenging.
At the same time, we are interested in probing the robustness
and generalization properties of the LS-VO architectures over
the ST ones. Figure 6 shows the KITT! results. From 0a
and 6b we notice that, while all the average ervors lor each
fength increase with respect (o the previous experiments, they
increase much more for the 1wo ST variants, I we consider
the errors depicted in Figures 6¢ and Gd, we abserve that
the LS-VOQ networks perform better than the ST ones, except
on speed around 60Km/h, where they are on par, This is
understandable. since the networks have heen trained on o1
and d3, that correspond to very low and very high speeds, so
the OF in between them are the less represented in the raining
set. However, the most importans consideration here is that the
LS-VO architectures show more robusiness to domain shilts.
The piots of the performances on Malaga can be foend ontine
[361. and the same considerations of the previous one apply.

The last experiment is on the downsampled and blurred
image. On these daiasets both VISO2-M and ORBSLAM2-M
fail 1o give any trajectory, due to the lack of keypeints, while
Learned methods always pive reasonable results. The results
are shown in Figure 8 and 9 {or the KITTI and the Malaga
dataset, respectively, In both KITTI and Malaga experiments
we observe a huge improvement in performances of 1.5-VQ
aver ST-VO. Due to the difference in sample variety in Malaga
with respect o KITTI, we observe overfitting of the more com-
plex network (LS-VO) over the less represented finear speeds
(above 30Kmh). This experiments demonstrate that the L8-VO
architecture is particularly apt t¢ help end-lo-end networks in
extracting a robust OF representation. This is an impostant
resubl, since this architecture can be easily included in other
end-to-end approaches, increasing the estimation perforoances
by a good margin, but without significantly increasing the
number of parameters for the estimation task, making it more
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robust te overfitling, as mentioned in Section IV.B.

Y1, CONCLUSIONS

This work presented LS-VO, a novel network architecture
for estimating monocular camera Ego-Motion. The architec-
ture is composed by two branches that jointly learn a latent
space representation of the input OF field, and the camera
motion estimate. The joint training allows for the keaming of
OF features that take into account the underlying structure of a
tower dimensionat OF manifold. The proposed architecture has
been tested on the KITTI and Malaga datasets, with challeng-
ing alterations, in order to test the robustaess to domain vari-
ability in both appearance and OF dysaamic range. Compared
to the data-driven architectures, LS-VO network outperformed
the single branch network on most benchmarks, and in the
others performed ar the same level. Compared to geometrical
methods, the learned methads show outstanding robustaess 1o
non-ideal conditions and reasonable performances, given that
they work only on a frame (o frame estimation and on smaller
input images. The new architecture is lean and easy to train and
shows good generalization performances, The resubts provided
here are promising and cncourage further exploration of OF
field latent space learning for the purpose of estimating camera
Ego-Motion. Ali the code, datasets and trained models are
made available online [36].
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Abstract

Synthetic aperture radar (SAR) interferometry (InSAR) s performed using repeat-pass geometry. InSAR technique
is used 1o estimate the topographic reconstruction of the earth sarface. The main problem of the range-Doppler
focusing techoique is the nature of the two-dimensional SAR resuit, affecied by the layover indetermination. la order
to resolve this problem, a minimum of 1wo sensor acquisitions, separated by a baseline and extended in the cross-
slant-range, are needed. However, given its multi-temporal nature, these techniques are vulnerable 10 atmosphere
and Barth environment perameters variation in addition to physical platform instabilities. Furthermore, eilher two
radars are needed or an interferometric cycle is required (that spans from days o weeks), which makes real time
DEM estimation impossible. In this work, the authors propose a novel experimental alternative to the InSAR method
that uses single-pass acquisitions, using a data driven approach implemenied by Dleep Neural Networks. We propose
a fully Convolutional Neurat Network (CNN) Encoder-Decoder architecture, training it on radar images is order 10
estimate DEMs from single pass image acquisitions. Our results on a set of Sentine] images show that this method
is able to lcarn o some extent the statistical properties of the DEM. The results of this exploratory analysis are
encouraging and open the way to the solution of single-pass DEM estimation problem with data driven approaches.

1 Introduction - SINGLE LMK COMPLEX RADAR INPUT

Interferometric Synthetic Aperture Radar (InSAR) al-
fows topographic reconstruction of a physical environ-
ment. The technique is performed designing a spatial
single-baseline SAR geometry [12]. [3].[22]} where the
result is & digital elevation model (DEM). However, to
solve the phase indetermination with 2 good akitude ac-
curacy, 4 minimom of two pass are needed, and this
usually kmplies that we need 10 wait days, or months
between the first and the second pass. We propose a CORVOLLTONALT
method for estimating the topographic reconstruction NEURAL
with machine learning, implementied by Convoluiional NETWORK
Neural Networks (CNNs) in order to estimate 2 DEM
using only one single-look-complex (SLC) SAR tmage.
Before getting inside the description of the novel signal
processing technique, a brief analysis of the InSAR his-
tory is given. It is necessary to go back in time, until
1980, where Walker er al. in [21} admits the feasibil-
ity of fine Doppler frequency resolution existing for the
eange-Doppler SAR iinage. In this context a high energy : :
scatlering point target may move through several range- ESTIMATED DEM
Doppler resolution cells, producing a smeared trace.

SAR data are represented with a three-dimensional ~ Figure It Overview of the proposed DEM estimaton ap-
Fourier transform of the object reflectivity density. A proach. The proposed approach does not need multiple radar
full three-dimensional environment reconstruction is  ACAuisitions. Insicad, it processes a single look complex radar
processable by an inverse Fourier transform. Munson ef :mﬁge.m estl.matc the ass:oclatcd clcvaqon model. tn order
al. {171 show that spotlight SAR, interpreted as a tomo- to achieve this, we exploit the convelutional neural network

hi tructi bl hesizes high res paradigm. In partticulaz, the encoder section extracts highly in-
Zraphic FeconsIruction prote, symnesizes MEN 80~ o, q0ive local structures (.e., features) from the input radar

lution terrain maps observed along multiple observation image. Afterwards, the decoder section decodes the features
angles, and predicts the DEM image.




Jakowals et al. [10] extend the work of Munson et of, 1o
& new three-dimensional formulation, making the sim-
plifying assumption that the SAR range-Doppler image
is two-dimensional. Unfortunately, this assumption im-
plics the generation of the layover effect and, in order to
explore target detection in the cross-slant range, multi-
ple observations have to be performed. In [2} the author
gave a thegretical explanation of the frequency diversity
in SAR-Tomography. A very good introduction to In-
SAR is given in [15]. The work gives detailed infor-
mation for combining complex SAR images recorded
by antennas positioned at different locations. Recent
years saw a refinement of the InSAR techaigue, trying
to remove the need of using multiple satellite passes. In-
SAR can also be applied vsing two sensors mounted on
the same platform. This configuration is called single-
pass interferomeiry {15]. However, to obtain a digital
clevation model with useful accuracy a minimum base-
line is needed. Application of InSAR from spacchorne
radar prospective is also given in {16}, In Colasanii ¢
al. [4} authors performed a precious study regarding
ERS-ENVISAT inlerferomelry despite of their carrier
frequency having a shift of 3iMHz. In [7] the auihors
gave demonstration in estimating absolute height using
a single staring spotlight SAR image using the infor-
mation of different azimuth defocusing levels generated
by scatlerers positioned at different heights. The prob-
lem of this technique seems being excessively anchored
to the naiure of the staring-spoilight acquisition which
gives a reduced range-arimuth swath of observation and
precions absolute height estimation is possible only for
few azimuth intra-chromatic high coherency scatlerers,
However, all the aforemeationed methods require com-
plex models and computations to take into account all
the atmosphere, sensor and environment conditions. Up
t0 the authors knowledge, the possibility of computing
DEM estimates with a standard SAR sensor and with
a single-pass acquisition has not be tackled before. In
this work, we propose the use of a ditferent paradigm 1o
solve this problem. Since a lot of SAR images has been
coflected in the past, we adopt a data driven approach.
The work has been inspired by recent work on Monoc-
ular Depth Estimation performed in the Robotics and
Computer Vision communities [13], [14], [19], [20], [9],
[81, {18], [11} Usually, in the Robotics comext, depth
estimation from standard camera sensors is done by (-
angulation of information collected through siereo-rigs,
ot using multiple passes of the same sensor. Recently,
Convolvtional Neural Networks (CNNs} models have
been proposed to perform a reconstruction of a depth
map from a single image acquisition, The problem of
learning depih from image appearance has similarities
with the task of learning DEMs from radar images. In
this work, we propose t¢ use the same reasoning, learmn-
ing the conditional distribution of digital elevation maps
from stngle-pass interferometric imaging. We show that
the proposed mode! is able to learn 1o some extent the
spatial telationships from the input dina, even with a
moderate amount of data. This preliminary study al-

ready shows promising resolts for future developments.

2 Methodology

o order 1o perform DEM estimation from single-pass
SAR acguisition, we need to infer the structure of the
observed Earth portion by only using a single radar im-
age. We achieve this by devising a deep neural network
architecture that tearns o predict the DEM by extract-
ing siructures and high-level information from the input
radar image. The key intuition behind this steategy lies
in the exploitation of local image structures to infer the
DEM value at a cerain location (i.e., image pixel). By
using multiple stages of convolutional filters, we are able
10 exiract high-level structures {i.e., features) at dilferent
scales. These features are then used by the model 1o re-
solve ambiguities and eslimate the DEM.

In the remainder of this seclion, we firsthy describe more
formally the principles behind our approach. After-
wards, we provide details about the proposed convolu-
tionat newral network architecture,

2.1 Estimation Problem Formulation

We want t0 model a function ¥ thay, given a single radar
image £ & ©7%™ represented in the complex range-
azimuth domain, is abie to estimaie the relative DEM,
filtering out radar noise and reseiving the iayover in-
determination. The output of the model 1s the DEM
image It € R™"™, where each entry contain the cle-
vation valoe at that location. In arder to evaluate the
contribution of the complex components of the radar
image, we give the model as input the absolute value
T, € R"™ = gbs({T} and the phase Z; ¢ RM™ =
phase(l) of the complex image Z, Thus, our function
is definedas £ : Z,,Z, — D,

For the network structure we exploil the emcoder-
decoder paradigm, similar 10 [, 6, 13, 141 This kind
of architecture is composed by two main blocks, each
one composed by a number of convolutional layers, as
shown in Figure 1. The encoder pan computes the
spatial features and at the same time reduces the im-
age representation size layer after layer, in order to
find an encoded represemation of the image: the de-
coder part takes this encoded representation ad decom-
presses it, with upsamplings and convolutions, 1o finally
reconstruct the original image. The tass that is mini-
mized is the DEM reconstruction error, that is propa-
gated through the decoder and encoder layers. In this
way, the network is able 10 leare a lower dimensional
representation (an embedding} of the input radar imsges,
removing noise and increasing the generalization prop-
erties for further processing. We propose t0 use & vark-
ation of Encoder-Decoder architecture where the input
and ourput are not the same. In our case the inputs are
radar images and the cutpuis are the DEM reprojected
in the radar coordinates {slant-range versus azimuth).
The architecture we propose is a fully convolutional
deep network, that is able 1o handle generic inputs. Fur-
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Figure 2: Qverview of the proposed Convolutional Neural Network DEM estimator. The encoder seclion processes the input
radar image {i.e., the absolute and the phase images) and extracts features at different scales to detect informative local siructures.
The decoder sections decodes the features to estimate the associated DEM image,

Layer name | Kernelsize | Stride | Padding | owtput size | activation
Inpat - - - - (140, 14,2}
Cenvl FIxdxid 1=1 sdme {148, 141, 64§ Rel
Encoder Section Convl axbhx6Gf | L=l ame {140, 10e, 64) Rel )
MaxPool Al | dxd - {35, 340 (1d) -
Conv3 EEEESFERES vatid (34,00, 138} Hell)
Convd Axd=x 128 L= vafid (31, H. 18} Reill}
Convs Bwax 198 F Ix1 | vatid | (20 20 [24) felld
Convé EEEEN RN ES! validl (27,27, 128) Linear
T-Convi duldw 8| Ixl vatid {211, 24, 134} PReLU
Becoder Section TConv2 R EE TN EER valid (31,41, 4id) PRel U
TCosv3 Gxdabl | ix1 vakid {48, 31, 64) PRel U
TConvd | BxnwaZ | Ex1 } vahd | tin. g ad) | PHReLU
T-Convd B3 3¥ [ dxd valid {140, 140. 342} PReLY
ConvOuipnt | A x 3% 1 Tt same (140, 40, 1) Eancar

Table ¥: Details of the network architecture. The network is composed by (wo sections, namety the encoder and the decoder
section. The encodet section has six convolutional filters and 8 max pooling layer to extract Features & different scale levels. The
decoder section decodes the features by using transposed convolutions to estimate the DEM image. Padding some is used when
we need {0 preserve the dimensions of a layer input. Conversely, padding valid indicates that the convolution operation processes

only vatid paich of the input {i.e., the output dimension is stightly smaller due to border effecis).

thermore, fully convolutional architectures preserve the
spatial information boih in the encoder and the decoder
sections, which is crucial to fully exploit local siructure
information.

The encoder section is composed by a series of convolu-
tional fayers, which sequentially apply learned filters on
their input to compulic the features.

To extract higher level features, the input is downsam-
pled multiple times. To scale inputs, we use max pool-
ing.

The decoder section is composed by a stack of trans-
posed convolutional Jayers that learn to reconstruct the
pixel-wise predictions of the DEM image from the fea-
tures computed in the encoder section. Differently from
the encoder section, instead of vsing unpooling layers
10 reverse pooling operations, we take advantage from
the transposed convolutional tayers 1o fearn an effective
upsampling strategy.

The network is detaited in Table 1 and shown in Figure
2. Al the convolutional layers in the encoder section
have rectified-linear activation functions {ReL. 1}, except
for the last one (Conv6} that has a Hpear activation func-
tion.

The decoder section has five 3 x 3 Transposed Convolu-
tional (T-Conv) layers to decode the fealure extracted by
the first section of the notwork. The Fast T-Conv layer
performs an upsampling by steiding the convolutional

operations by a factor of 4. All the T-Conv have prob-
abilistic rectified-linear unis (PReLU) to allow for neg-
ative aclivations during the decoding phase. Finally. a
single channel 3 x 3 convolutional layer with a linear
activation cutputs the predicted DEM image.

All the convolutional filters are regularized with L2
penalty to preveni overfitting.

The ohjective that is minimized during the learning
nhase is the pixel-wise linear root mean squared error
{RMSE} batween the estimated and the GT-DEM im-
ages:

1o ;
NEDL s M
=l

where T is the number of pixel of the DEM image
&' € Dy and d; € D.

3 Experiments

In this section, we describe the experiments we run to
validate our proposed CNN-based DEM estimation ap-
proach. In the folowing, we first describe the experi-
mentat setup, providing details about datasets used, pre-
processing procedures and details abom CNN taining.



Afterwards, we discuss the resslts and draw conclu-
s10nNs.

3.1 DBatasets

We test out approach in three different datases, namely
the Alps, the California and the Tucson datasets. The
SLC image and the associated GT DEM are depicted in
Figure 3(a)-3(b), 3{c)-3(d) and 3(e)-3(). respectively.

Aurpal o]

el

)

() GTDEM - Alps

azimesitgroal

{8} 5LC- Alps

Al gyt

{d) GT DEM - California

Ranmipra?

Al gt

{[) G DEM - Tucson

e H e
(&) SELC - Tucson

Figure 3: The datasets used for validating the proposed ap-
proach, The first row refers to the Alps dataset, the second 10
the California dataset and the third to the Tucson dataset. The
first cohumn depicts the SLC images, while the second one
shows the associated GT DEM.

These datasets are taken from the Semtinel Ewropean
Space Agency satellite mission. In particular, we use
three different acquisitions observing the Alps {ltaly),
California (USA) and the city of Tueson (USA). The
datasets are Single Look Complex (SLC) and vertical-
vertical {VV) polarized. Bach acquisition is composed
by an SLC image with the associated DEM (GT-DEM)
computed with standard InSAR techniques. The SLC
images are provided as a big complex matrix {typically
200020000 entries), while the GT-DEM is a real val-
ued matrix with the same size of 1s corresponding SLC
image,

To learn the CNN model, we generate the training and
test samples by sliding a 4000x4000 window on the
SLC/GT-DEM pair. The window has a step of 100 pixels
with respect to both row and column directions. The size
of the window is chosen so that each sample contains

enotgh local structure information 1o allow the CNN
¢ properly estimate the DEM image. Each sample is
downsampled to 140x140 pixels to make the leaming
task tractable. Depending on the size of the input matri-
ces, we generate up 1o 22000 samples for each dataset
(the exact sample number is discussed in the following
seciions). The train-test sphit is generated by randomly
selecting the 65% of samples for Lraining and the 35%
for testing.

3.2 Training details

The CNN network is trained by using the Adam Opti-
mizer, setting she learning rate e = 0,001, (he exponen-
tial decay rates for the moment estimates 3, = 0.9 and
Bo = 0.999, and € = 1078, Al} the L2 regularizer val-
ues of the convolutional 1ayer arc set to (.01, The batch
size is set 1o 128 for all the experiments and the raining
set is randomly shuffled at the end of each epoch. Each
model is trained for 500 epochs, which takes approxi-
mately four hours with a desktop workstation equipped
with a Titan Xp GPU. Once the model is learnd, the pre-
dictions run very fast at iest time: the computation of the
DEM image associated to 2 400024000 SLC subwindow
takes 0.022ms. i.e. it runs at approximately 450 Hz.

3.3 Discussion

Figure 4 shows examples of the real DEMs and the es-
timated ones for each datasets. In addition, the elova-
tion profiles are piotted for two sample range (in pixel),
in order to better show the estimation propertics of the
network. Alps datasel is composed by 11031 train im-
ages and 5818 test images, and the average RMSE on all
test images is 105.28m. California is composed by 8693
train images and 4755 test images. The average RMSE
in this case is 74.46m. Finally, the Tucson dataset has
8846 rain and 4849 1est images. In this test, the average
RMSE error is 43.45m.

It is possible to see qualitatively that the Network
learned the aktitude statistics, giving a result that closely
rescmbles the ground truth. The main difference is a
smoothing effect that the network estimate has in com-
parison with the original. This is more evident il we
compare the GT and predicted profiles for fixed range
values (in pixel with respect to the image coordinaes) of
30 and 120 pixels, respectively. This is shown in Figures
4{c)-4{d). 4(g)-4(h) and 4(k)-4(1) for the Alps, the Cal-
Hfornta and the Tucson dataset, respectively. From the
profiles it is even more apparent that the network is able
1o outpan a digital clevarion model for the input images
that closely resembles the original. The general wends
of the GT DEM are closely foliowed and the main dif-
ferences between the GT and prediction are due io the
smoothing effect on crest ripples, since that for the net-
work these ripples e the ground truth are like a high
frequency signal {noise} superimposed to the general el
evation model. To better quantify the performances of
the nctwork, we quantized the range of clevations in the
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Figure 4: Compurison between the estimated and the ground oruth DEM images. The first row refers o the experiment o the
Alps dutaset, while the second and the third show the results for the California and the Tucson tests, respectively. The first column
depicts the GT DEM of a sampie image from the three datasets, while the second column shows the relative estimated DEM. The
third and the fourth columas compare the estimated alitude profiles with the ground truth ones ot fised range values,

datasers and compured the average error for each bin,
in order to anatyse the error distribution given the GT
elevarion. The resulting plot is shown in Figures 5(a),
S(b) and 5(c) for the Alps, the California and the Tue-
son datasets, respectively. The three plots, together with
ihe ones in Figore 4 and in consideration of the average
RMSE on the test sets show thal the estimation network
performances degrades when the terrain is mountainous,
while are close to the real DEM [or stow varying terrain
features. This is expecled, since the altitude information
is not really included in a single pass radar image, so
the Network has 10 extract it from context level infor-
mation. We hypothesize that, increasing the amount of
data given to the netwaork, is possible to further reduce
the esrors on the high frequency ripples. Furthermore,
devising more complex architectures should also help so
betier model the varizbilities of high crests.

4 Conclusions

In this paper. we have proposed an novel method able
to estimate DEMs using single SAR images instead in-
terferometric couples. The proposed method uses &
data driven approach, implemented through an Encoder-
Decoder CNN3s architecture, and is able 1o potentially
solve the layover indetermination present on the single
SEC SAR image using image context information. Our
results show that this method is promising, and able to

leara useful DEM cstimate even with moderate raining
time and data, For training the CNN a set of Seatinel
data has been used,
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