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Introduzione

Nell’ambita della ricerca in Robotica e Intelligenza Artificiale i
sistemi distribuiti rappresentano un ampio sottoinsieme di
sistemi di natura e scopi molto diversi. In particolare si parla di
Ubiquitous Robotics quando si ha a che fare con sistemi
intelligenti le cui capacita e la cui intelligenza non risulta
concentrata in un singolo apparato computazionale, o in cui gli
attuatori, o qualunque altro dispositivo in grado di effettuare
un’azione o erogare un servizio, non siano fisicamente collegati.
Chiaramente questo tipo di definizione abbraccia con
naturalezza molti generi di sistemi distribuiti, intersecando
I'Internet of Things, ogni genere di Smart Grid e molte altre
applicazioni. I’cbiettivo di questo progetto di ricerca, affiliato al
progetto SEAL (Smart&Safe Energy-Aware Assiste Living), era
proprio quello di portare alcune delle tecnologie piu avanzate di
Intelligenza Artificiale e di Robotica nel settore della domotica
al fine di aumentare la sicurezza e la vivibilita degli ambienti in
cui l'uomo vive e passa gran parte del proprio tempo.
Chiaramente un edificio “intelligente” & sicuramente uno di quei
sistemi che possono essere inquadrati come Ubiquitous Robots.

Nell’ambito di questo progetto di ricerca si & portato avanti il
lavoro secondo una duplice direttrice. La prima ha portato avanti
alcuni aspetti di ricerca applicata, gia avviati in precedenza,
basati sulla Visone Computazionale, in quanto essa rappresenta
uno dei canali di interazione uomo-macchina principali. Questi
lavori sono applicati al contesto dei veicoli autonomi per
convenienza di argomentazione scientifica (disponibilita di dati,
e comunita scientifica pit sviluppata), ma la natura degli
algoritmi é del tutto generale e puo essere applicata anche al
contesto dei sistemi domotici (riconoscimento di persone e
ambienti noti, ad esempio).

La seconda direttrice ha invece trattato principalmente degli
aspetti di sistema e di interconnessione di una rete di sensori e
attuatori domotici, sviluppandoli come si sviluppa un sistema
roboetico distribuito.

L’insieme dei lavori di ricerca sviluppati secondo queste due
direttrici rappresenta un passo avanti nella frontiera della ricerca
in questo settore. Il passo successivo sara rappresentato da una
migliore integrazione finale di tutti i sottosistemi e algoritmi
sviluppati, al fine di ottenere una funzionalita di sistema ancora
pitl complessa.
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SmartSEAL: A ROS based Home Automation Framework for
Heterogeneous Devices Interconnection in Smart Buildings

Enrico Bellocchio!, Gabriele Costante!, Silvia Cascianellil, Paolo Valigil, Thomas A. Ciarfuglia'

Abstract— With this paper we present the SmartSEAL inter-
connection system developed for the nationally founded SEAL
project. SEAL is a rescarch project aimed at developing Home
Automation {HA) selutions for building energy management,
user customization and improved safety of its inhabitants. One
of the main problems of HA systems is the wide range of
communication standards that commercial devices use. Usually
this forces the designer to choese devices from a few brands,
limiting the scope of the system and its capabilities. 1n this
context, SmurtSEAL is a framework that aims to integrate
heterogeneous devices, such as sensors and actuators from
different vendors, providing networking features, protocols
and interfaces that are casy to implement and dynamically
configurable. The core of our system is a Robotics middle-
ware called Robot Operating System (ROS). We adapted the
ROS features to the HA problem, designing the network and
protocol architeetures for this particular needs. These software
infrastructure allows for complex HA functions that could be
realized only fevering the services provided by different devices.
The system has been tested in our laboratory and instatled in
two real environments, Palazzo Fogazzaro in Schio and "Le
Case” childhood schesel in Malo. Since one of the aim of the
SEAL project iy the personalization of the building environment
according to the user needs, and the learning of their patterns of
behaviour, in the final part of this work we also describe the on-
going design and experiments to provide s Machine Learning
based re-identification module implemented with Convolutional
Neural Netwerks (CNNs). The deseription of the adaptation
module complements the description of the SmartSEAL system
and helps in understanding how to develop complex HA services
through it.

l. INTRODUCTION

With many countries aiming to considerably reduce their
annual carbon emissions by 2050 [1], energy conservation
has become an issue of national importance. Buildings have
great impact on human life and global sustaingbility. They
consume a large amount of energy to provide a comfortable,
healthy, safe and productive environment for human beings.
At the same time, according to {2], Home Automation
markel wag valued at around USD 5.0 billion in 2014 and
is expected to reach USD 21.0 billion in 2020, growing at
a CAGR (Compounded Average Growth Rate) of around
23% between 2015 and 2020. For these reasons improving
building operational performance is of significant importance
for energy saving in the construction sector. and Home Au-
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Fig. 2: SEAL project logo.
tomation systems can play a key role for decreasing energy
consemption while maintaining, or improving, comfort.

Nowadays there is no common standard Tor HA devices
interoperability. This pose an ebstacle {or the efficient use
of every device in an automated home when the devices are
produced by different vendors. Some examples of current
HA protocels arc ZigBce, Z-Wave and KNX [3]. The lack
of a common standard poses a serious limit to actual sman
building integration. To solve this problem we propose
the use of a middle-ware called ROS Robot Operating
System that aflows the abstraction and the communication
of hetcrogencons devices. A central server runs the core
system. while every device. from single sensors to vendor
specific controllers, is a node of the network and is able to
communicate with other nodes through a standard TCP/IP
network, The communication protocol uses a topic publish-
er/subscriber architecture that allows for full decentralization
of devices, if needed. A standard set of topics and commands
have been designed to create the common language for each
device to talk to others. On this communication infrastructure
more complex services that can act independently may be
added. Once the system is set-up, envirommental data can
be collected and routed with speed and ease. This allows,
for example, the collection of temperature, humidity and
air-quality profiles over time, build prediction models and
adopt strategies according to user habits in the use of the
building, thus improving comfort and safety. In particular, as
the SEAL project requires HA system adaptation to different
users, the use of Machine Learning techniques to model
users behaviowrs and habits ts ¢ssential, We developed a



ROS-compatible smart-camera and a state-of-the art People
Detection system in order to provide person specific services.
In this wark we describe both the architecture of the ROS-
based HA architecture and protocols, and the HW-SW design
of the people detection system.

Il. RELATED WORKS

Smart buildings appliances fall under the broader category
of the Internet of Things (I0T) [4]. In [5] a survey about HA
systems, illustrating advantages and disadvantages, is given.
It illustrates four main barriers that prevent a wider adoption
of these systems: high cost of ownership, inflexibility, poor
manageability, and difficulty in achieving security.

In literature there are many examples of automation sys-
tems installed in smart buildings. In [6] an agent based smart-
home called MAVHome is presented. Combining various
technologies, such as Antificial Intelligence, Mobile Com-
puting, Robotics and Multimedia Computing, the system
is able to perceive home rooms status and act on the
environments using actuators. The project combines a wide
range of Machine Learning approaches to predict mobility
patterns and ambient usage of the inhabitants, with the focus
on maximizing the comfort and minimizing the operational
costs. In [7] a set of "tape on and forget” sensors that
can be installed in home environments is proposed. These
devices are then used for Activity Recognition. In [8] a
smart building called SMLsystem is described. SMLsystem
is a solar-powered house that integrates a whole range
of different devices and technologies, such as solar light
irradiance sensor, CO2 and humidity sensors. in order to
improve energy consumption. This experimental set-up is
used to implement an On-line Learning algorithm, based on
a Neural Network architecture, for the production of short-
term forecast of indoor temperatures. The work proposed
in [9] uses Data Mining approaches to analyze samples
collected by a Building Automation System (BAS) present
in a commercial building in Hong Kong. Sensors samples,
such as indoor and outdoor temperatures, CO2 concentration
and power consumption measurements, were collected for a
period of six months. This dataset was then refined with
data-mining techniques, that includes clustering approaches
and association rules extracted from data. These rules are
then used to improve building operational performance.
In [10] electric energy consumption samples from three
kind of buildings situated at the Univeristy of Ledn were
collected. In particular from the School and Administrative
buildings. from the Research buildings, and from the Special
Purpose buildings. These samples were then filtered with
a dimensionality reduction algorithm to obtain electricity
consumption profiles.

However, the approach proposed in previous works have
been developed for a specific set of devices and had a
fixed set of services focused on a specific task. In contrast,
our SmartSEAL system provides an efficient way to add
novel heterogeneous devices (ie., developed by different
vendors) and services on the fly, without requiring a complete
system re-design. Our work proposes the use of Rabotics
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Fig. 3: Seal architecture overview.

technologies to create an adaptive envircnment that easily
integrates different kinds of software and hardware agents.
In addition we show the future perspectives of the system,
that will feature the use of Machine Leamning techniques
for user personalization, energy consumption forecasting and
energy management optimization, describing the people re-
identification module that has been already developed for this
project.

111. CONTRIBUTION AND OUTLINE

The SmartSEAL system aims 1o interconnect heteroge-
neous devices and software entities in order to provide
complex cooperative services that would not be available in
other ways. Devices are connected across a LAN network,
and ROS framework is used as an integration layer. To the
best of our knowledge, our work is the first example of HA
system developed using ROS framework. To summarize, the
main contributions of this work are:

» The implementation of a messaging protocol and an
abstraction layer for typical sensors and actuators used
in HA appliances.

» The deployment and test of the proposed system on
two real world buildings in collaboration with local
governments.

« The initial design and implementation of a user habits
learning module, based on state-of-the-art Machine
Learning people identification algorithm.

« The design of custom embedded hardware needed to
run the people identification algorithm.

The outline of the paper is the following: In Section IV we
give an overview of the ROS middle-ware, while in Section
V we describe in details our messaging protocol architecture
and the actual deployment and functionalities of the system
in the two test sites. We also provide a discussion of the
network performance. In Section VI we present the initial
design of the CNN-based habits learning module, describing
current functionalities and future development. In Section
VIl we draw the conclusions.

IV. ROS OUTLINE

In this section we discuss the system architecture. As
mentioned, we base our system on the ROS middle-ware
[11]. ROS defines a computational environment and network
functionalities for software agents, called nodes. This nodes
are software processes that range from lower-level hardware



drivers to sophisticated algorithms. The nodes work together
in a producer-consumer fashion: the output of a node is
written in a named topic that is broadcast over the network,
while other nodes can subscribe it if they need this infor~
mation. The node network and communication is managed
by a "master node”, called roscore, that provides naming
and registration services to the rest of the nodes in the ROS
environment. Thanks to roscore, the ROS network structure
can change during execution, since nodes can be added or
removed from the network at run time, As mentioned before,
ROS network is based on TCP/P protocol stack, so it can
be either hosted in a local machine, or over a network such
as a LAN or a VPN, ROS provides two main mechanism of
communication between nodes:

« Topic: is the synchronous communication mechanism.
This type of communication follow a publisher/sub-
scriber mechanism. A node sends a message by pub-
lishing it on a topic, and a node receives message by
subscribing it. Each Topic is defined by a simple text
file, called message file, that describes the format and
data structure of the message. In these terms a topic
can be considered a one-way communication channel
and its name identifies the meaning and the content of
the message. There could also be multiple publisher and
subscriber nodes for each topic.

« Service: is the asynchronous communication mecha-
nism, it uses a clientfserver communication paradigm.
The server node offers a service with a descriptive
name and a client needs to send a request message to
the server node whenever it wants the service to be
provided.

Roscore acts like a DNS server, tracking publishers and
subscribers to topics and services, and enabling ROS nodes
to locate each other. Once nodes have located they can
communicaie peer-to-peer. Is possibie to use, for the topics
and services, standard messages structures provided by ROS
libraries, as well as customized structures,

V. SMARTSEAL MESSAGING ARCHITECTURE
A. Architectitre Overview

In the SmartSEAL system we have a network of devices
of different kind and vendors, mainky sensors and actuators,
connected through Ethermet LAN or WiFi to a central host
machine. This machine is called SmartSEAL controller and
it is the machine who communicates with the rest of the
SEAL network.

In the SmartSEAL system, buildings are divided in con-
ceptual zones. A zone represenis & common environment
for a group of devices, such as a room, a garden or a
courtyard, Every device can be assigned to one or more
zones. Sets of devices from the same vendor can be grouped
into subsystems, if needed. Within each subsystem, devices
communicate with each other through the vendor-specific
low-tevel protocols and policies. The connection to the ROS
network is provided by a device capable of acling as a
translator to the ROS specific protocol stack. This device is

called concentrator and could either be a dedicated embedded
system, or a software node running on a machine of the ROS
network.

Following these definitions, the concentrator node uses the
ROS communication features in the following way:

= Topies: are used for sending sensors measutements.

« Services: are used for actuators commands.

Each Topic message definition provides both sensor type,
in order to bring measurement information, such as sample
value, measurement unit, resolution and accuracy, and device
placement information, ¢.g. device and zone id. Also service
definition is customized and depends on command type, e.p.
integer or binary command.

Sensors in the system can be divided in two main cate-
gories: sensors that give analog measurement and devices
that give digital ones. Hence., we have defined two ba-
sic structures containing informations about measurement:
AnalogMeasurement and DigitalMeasurement. Analog-
Measurement contains information about resolution, accu-
racy, minimal and maximal range, and measurement unit and
value. DigitalMeasurement contains similar informations:
accuracy, minimal and maximal range, step size and value,
We have also defined an header part with informations
about devices, ie., device id, zone id and additional support
information. Basic structures and header part are composed
obtaining complex message definitions, nsed for ROS topics:

« AnalegDevice and DigitalDevice, used for sensors that
streamn analog or digital measurements,

« BinaryFlagDevice, used for sensors with boolean mea-
surements.

« IntegralMeasurementDevice, used for devices with
integral measurement, such as energy consumplion sen-
$018,

« CameraState, specifically designed for describing state
of robotic cameras.

Actuators command structure has two ficlds, one for the
service request and one for the response. We have defined
ROS service structures according to the command type:

« Setlnteger, used for command containing integer val-

ues.

+ SetFloat, used for commands that involves analog val-
ues.

« SetBool, used for boolean commands.

« MoveCamera, specific for moving robotic cameras.

+ GetStatus, this command type is implemented by every
device and is used for polling last sensors measuses,
Measure will be sended in sensor topic.

In the following, we show some examples of ROS topic
message and ROS service command definitions used in
SmartSEAL system:

Listing I: AnalogMeasurement message definition

string measurcment_unit
float accuracy

float resolution

fleat range.min



float range_max
float value

Listing 2: AnalogDevice topic definition
Header header
int id_device
AnalogMeasurement measurement
string info
int|[] zone

Listing 3: Setlnteger service definition

int id_device
int value

bool done
int error.code

For the SmartSEAL system we defined four types of

agents:

« Roscore: it runs in the SmartSEAL controller and
manages the ROS network.

« Translator nodes: acts as translator between ROS
protocol and one of the vendor-specific protocols, thus
providing subsystem lopics and services to the ROS
network. It runs either on a dedicated embedded system
or on the SmartSEAL controller, depending on the
specific implementation chosen by each vendor.

« Cooperative nodes: use actuators and sensors of differ-
ent vendors to provide complex functions. Cooperative
nodes run mainly on the SmartSEAL controller.

« Database Manager node: il is a special node used
to log sensor data and states. This node subscribes
every sensor lopic, collecting measures over lime. The
Database Manager runs on the SmartSEAL controller.

Cooperative nodes provide complex HA functionalities to

specific zones, such as specific heating and lighting condition
according to the current user. Since they can be started
at runtime, Cooperative nodes are developed to be self-
configurable. In order to do this two special topics were
defined: Command Discovery Request (CDRq) and Com-
mand Discovery Response (CDRp). Using this two topics
a Cooperative node is able to scan the network. checking
for devices able to publish the topics it requires to provide
a specific service or Feature in a specific zone. For example,
a gate control node could ask for the topic provided by a
camera that is able to see the gate, and the topic related to
the gate status. The combination of the two topics, CDRq
and CDRp. allow for the handshaking between the devices
providing the information and the Cooperative node that uses
this information to implement a complex service.

B. Svstem Deplovment

To test the SmartSEAL framework we conducted extensive
tests in three real environments, that represents different use-
cases. The first test site is a student facility located in a
wing of the Fogazzaro Palace, in the city of Schio, that is

Fig. 4: Palazzo Fogazzaro in Schio (left) and "Case™ child-
hood school in Malo (right).
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Fig. 5: Cooperative node execution.

commonly used as # study room by students of any grade.
The second test building is a kindergarten located in the
city of Malo. The last test site is the robotics lab in the
Department of Engineering of the University of Perugia.
These three sites have very different pattern of use, for
example the kindergarten has a very stable pattern, with
defined schedules, while the lab has a schedule that depends
mostly on the personal schedule and habits of the lab
staff, and is very changeable. Figure 6 shows the system
deployment pattern, in the first two of these buildings a
Videotec robotic camera is installed, together with a smart
boiler with energy consumption monitoring system (built by
Tecnowatt), automated gate actuators (built by BFT), smart
sensors kits (built by Ecam Ricert) and smart light and
heating plant (built by Vimar). In addition to this commercial
equipment, we installed one of the smart-cameras described
in Section VI in each site, toghther with a computer running
the SmarSEAL controller.

Videotec, Tecnowatt and Vimar Translators nodes run on
the same machine running the SmartSEAL controller and talk
directly with their respective subsystems. BFT subsystem
is quite similar, and the HA central device is a dedicated
embedded system called Magistro. Ecam Ricert HA central
device is represented by a normal computer that runs ROS
and its own Translator node. Finally, our smart camera is
equipped with an on-board Linux operating system and with
ROS, so it also runs its own Translator node.

Figure 5 shows how cooperative service node configu-
ration phase works. Cooperative node interacts with envi-
ronment lights according to zone id and presence messages
value. Presence message indicales person presence in the
specified zone. When the execution starts the node does not
know which devices are present in the system, it only know
the zone id where the functionality have to be provided. The
node subscribe the presence topic and command discovery



Fig. 6: Deployment scheme.
TABLE | Ping Perfornmance

Ping type Average Latency
1CMP Ping 113 ms
ROS Ping (XML-RPC) 504 ms

TABLE 1L Topics Performance

‘Topic type Bundwidth (10Hz) | Average Lalency
AnalogDevice H00.00 Bytefs 0021 s
DipitalDevice S60.00 Bywels 3020 s
BinaryFlagDevice 370.00 Byiels 0019 s
imegraiMens. Device 730.00 Bytels (IR
CameraState 1.10 KRytels 0036 s
CDRq 200,00 Byie/s 0018 5
CDRp TI500 By YRS

response topic. In this scenario, people detector node in
execution in the smart camera publishes presence messages,
Cooperative node fillers sensor messages according to zone
id. To know which light devices are present, cooperative node
publish & command discovery request message containing
the command type, Every device present on the SEAL
network thal can accept this command type will reply,
publishing a message on command discovery, coniaining
device information such as deployment zone id and device
id. Cooperative node filters comumand discovery response and
now can contacts interested zone devices, It is importunt to
notice that this low of operation is independent of devices
vendor,

C. Network Performance

In this section, we discuss the network performance. Tests
are performed on a point-to-point ad-hoc Ethernet network
with two hosts. Table 1 shows the latency comparison of
the ICMP and ROS ping packets. We want 1o measure the
overhead due to the headers of the packet introduced by
the ROS middle-ware, s0 we sent the simple ICMP ping
packet over the network and we compared the latency with
the ROS ping packet, which uses the XML-RPC protocol.
In particular, the ROS ping routine consists of a XML
coded request sent using the HTTP protocol. Despile of the
overhead of 6.91ms, this experiment proves that the ROS
framework does not compromise network functionalities.

Table T gives an overview of the bandwidth and the
latency for different topic message definitions. Messages on
topics are published with a rate of 10 Hz. Latency time is
quite similar for the various message definitions with an

Fig. 8: Smait camera internal view.

average value of 21ms, mainly depending of the network
throughput.

V1. BEHAVIOUR LEARNING WiTH CGNVOLUTIONAL
NEURAL NETWORK

The second aim of the SmartSEAL systen is to provide the
foundation for a self-configurating environment that is able
to learn the behaviours of specific individuals that, over the
uime, regularly uses the buildings equipped with the system.
This Section describes the module that provides the camera-
based people re-identification feature that is instremental for
the future development of the behaviour fearning feature,

In recent years the Deep Networks has become the tool
of choice for many computer vision tasks [12], [13]. Also
the core of our re-identification system is a Convolutional
Neural Network (CNN). trained to recognize people and
other common object present in the building environment. In
addition, to run such aigorithm a good amount of processing
power is required. For this reason we developed a custom
smart camera based on a CUDA capable device, The smart
camera is showed in figure 8 and is composed by two main
parl:

» Nvidia Jetson TK1: is an embedded prototyping, system
equipped with Nvidia Kepler GPU and Quad-Core
ARM Cortex~-A15 CPU. ot runs Ubwmu Linux operating
system and developing tools include Cuda libraries for
GPU optimization, optimized OpenCV libraries and
Deep learning frameworks, such as Caffe [14] and
Darknet, It also has gol a ethernet imerface and it
supports ROS middle-ware.

+ Mairix Vision BlueFox3 BF3-1012bc Camera: is an
reliable industrial camera, with an USB3 connection,
it can support maximum resolution of 1280x960 pixels
and a maximum framerate of 40 frames per second.

The main people detecting algorithm is an implementation
of the state~of-the-art YOLO object detector [12]. A CNN is
composed by a large sel of sequential Tayers that take images
from camera video stream and are trained 10 automatically
exiract the best set of features for optimal people and object
detection, as shown in Figure 7. Convolutional layers are
composed of large sets of filters that perform sequential
convolution operations on blocks of input data:

b = W.»x. 4+ b. (13

where k. and iz, are respectively the output and the input
matrices, while W, and b, are the weights and the biases ma-
trices. The weights of these convolutional layer are leamed
according to the task at hand, through a backpropagation
algorithm [15]. In between convolutional layers, often other



Convolutional Neural

Fig. 7: Qverview of detection system based on Convolutional Neural Network.

kind of layers are inserted to reduce the data to prevent
overfitting. The maxpool layer is one example of such
layers. It performs a down-sampling operation on the input
data, simplifing successive computations. Down-sampling is
performed extracting the maximum neuron activation x(; j):

max — T(pg) (2)

A= oy =
() (p.a)E ;)

where Q; ;) is the sliding pooling region and ;) is the
neuron activation value. The convolutional and maxpooling
layers are trained in order to learn the best filter weights for
the detection task, and to complete the algorithm pipeline a
fully connected neural network is placed at the end of the
cascaded filters. This layer is a standard NN that performs the
actual detection task using the feature computed by the CNN
layers. In detail, YOLO CNN architecture is composed by
twelve layers, where the first 8 layers are 4 of convolutional
layers paired with a maxpool layer each. The final four
layers are composed by two convolutional layer followed by
two fully connected layer. Fully connected layer conduces a
matrix multiplication of the input:

hj,-_ = “I”'Jrra:_ff_- + b!c (3)

where hy. and x g, are respectively the output and the input
parameter, and Wy, and by, are weights and biases.

The YOLO NN is trained to detect twenty classes of
objects, including person, chairs, cats, planes, and others.

In a SmartSEAL system the YOLO detector can be
considered as a sophisticated sensor that can detect people
presence with good precision, and this information can be
used for various HA functionalities, such as temperature and
CO2 level forecasting, interaction with lights, windows and
radiators, and more. At the current stage of development of
the project, the YOLO detector is used to automatically ac-
tuate lights and temperature control. The behaviour learning
features are under development in these days and will be
described in future works.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we presented the SmartSEAL Home Automa-
tion framework. We discussed the system messaging proto-
col, the network architecture and the deployment on actual
buildings in the cities of Schio and Malo. We demonstrated
through experiment that the system allows for the seamless
communication of devices from different vendors in order
to provide new and complex services. We gave examples of

these services, focusing in particular on the complex CNN-
based people detection module that will soon develop in
the habits learning module. This module will provide the
customization and adaptability required for better cnergy
management and improved user experience.
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Exploring Representation Learning With CNNs
for Frame-to-Frame Ego-Motion Estimation

Gabriele Costante, Michele Mancini, Paolo Valigi, and Thomas A, Ciarfuglia

Abstract-—Visual ego-motion estimation, or briefly visual odom-
etry (VO), is one of the key building blocks of modern SLAM
systems. In the last decade, impressive results have been demon-
sirated in the context of visusl navigation, reaching very high
tocalization performance. However, all ege-motion estimation sys-
tems require careful parameter tuning procedures for the specific
environment they have to work In. Furthermore, even in ideal
scenarios, most state-of-the-art approaches fail to handle image
anomalies and imperfections, which results in less robust esti-
mates, VO systems that rely on gesmelrical approaches extract
sparse or dense features and match them to perform {rame-to-
frame (F2F) motion estimation. However, images contain much
more information that can be used to further mprove the F2F
estimation. To learn new feature representation, a very successful
approach is to use deep convolutional neural networks. Inspired by
recent advances in deep networks and by previous work on learn-
ing methods applied to YO, we explore the use of convolutional
neural networks to learn both the best visual features and the best
estimator for the task of visual ego-motion estimation. With exper-
imenis on publicly available datasets, we show that our approach
is robust with respect to blur, luminance, and contrast anomalies
and outperforms most state-of-the-art approaches even in nouinal
conditions.

Index Terins—Visual Learning, Visual-Based Navigation.

1. INTRODBUCTION

GO-MOTION estimation is a fundamental building block
of any robotic system. needed for localization and route
planning, and for the more complex task of mapping an
unknown environment, When vision comes into play, the task
of estimating the ego-motion of cameras is referred to as Visual
Odometry (VO I recent years. impressive results have heen
shown in the context of monocular visual odometry 1], [2],
(31, 41
Muost visual odometry approaches are grounded on the esti-
mate of the camera motion between pairs of conseeutive frames.
This frame to frame (F2F) estimate is in most cases com-
puted with geometric methods, i.e. thirough the use of projeclive
geometry relations between 3D points of the scene and their
projection on the image plane, or by minimizing the gradient ol
the pixel intensities across consecutive tmages [5]. The initial
FF2F estimate is then refined with different steategies, such as
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bundie adjustment on a sliding window of previous frames {6},
or loop closure detection [71.

However, the initial feature extraction process is critical
to the whole estimation process amdd, because of that, while
in structured and controlled environments (e.g., with a large
amount of texwre and without dynamic objects) these stan-
dard approaches provide good results. their perlormance drops
guickly when facing challenging and unpredicted scenarios,
These uncertainties ¢an have various causes: (1) ithumination
changes over ime and seenes; (ii) presence of dynamic objects;
(i1} differeat canera calibrations: (iv) low-ltexfured environ-
mends, noise and blue Strengthening the estimation process
against these issues requires @ twofold action. On one side
more informative and robust Teatures are needed. on the other
the estimation algorithms are requived 10 better handle noise
and unpredicted input anomalies. As far as the estimation
aspect goes, new approaches have recently been proposed, that
start from the perspective of a statistical learning probiem [8].
[91. and show many desivable properties. Learning an estima-
tor from data requires good labelled datasets, but when these
are available, the ledarned estimator is robust to Hlununation
changes, notse and blur. From the point of view of what features
to use for robust ¢go-motion estimation. recent advances in
Deep Networks applied to representation learning have showna
lot of potential [10]. The core of these approaches in Computer
Vision 1510 use deep Convolutional Newral Networks (CNNs) (o
tearn the best convolutional filters w apply o inpit image for a
given fask.

Guided by the previous considerations. in this work we
explore a different strategy for performing visugd ego-motion
estimation. We do not assume any pre-defined procedure ©
compule the transformation hetween frames. Ingtead, follow-
ing the deep network learning paradigm, we allow the system to
autonomousiy sefect both the portion of input data that s crucial
to achieving robust F2F motion estimation and the strategy for
computing it. In particalar, inspired by the results achieved with
deep architectures, we propose 4 novel F2F estimation strategy
that predicts the camera motion using a CNN (see Figure 1), By
learting the CNN. our approach is able (o auntonomously select
the moyt important visual cues and the bess strafegy to compute
F2F estimates that are rebusr 1o blur, liminasice and consirast
anomalies.

1. RELATED WoORK
To our knowledge, alporithms that compute VO can be
divided into different categories, according to the kind of pro-
cessing used for computing ego-motion: Geometric Methods,

2377-3766 © 2015 IEEE. Parsonal use is permitted, but republication/redistibution requires IEEE permission,
See higpAwwoeteee.org/publications _standard/pubticatioas/rightwindes il for more informaion
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Convelutionn| Neural
Network

Frameto Frame
Estimation

Fig. 1. Overview of the proposed Convolutional Neural Network VO estimator.
First, dense optical flow is extracted from consecutive images and then fed into
a chain of convolutional filters that extract more visual information. Finally, the
new features arc used by a fully connected neural network to estimate the F2F
camera motion.

that are further divided in Feature-based and Direct Methods,
and Learning methods, that learn the estimation function from
data.

In the following, the related works for each kind of approach
are presented.

A. Geometric Methods

1) Feature-Based Methods: Feature-based methods rely on
the extraction of visual salient points from each image in the
stream, tracking them frame after framec until they disappear
from view. Typically, the process matches 2D point features
across two or more frames, then reconstructs their 3D posi-
tion using triangulation. Examples of these approaches are [11],
[12], [13] for stereo and [14], [15] for mono.

To address the problem of scale estimation a number of solu-
tions were proposed. In [16] the scale is recovered using the
extra information from an IMU, while in [1] and, more recently,
in [2] an optimization approach using loop closing informa-
tion is able to recover scale errors. In most cases, to address
the problem of scale uncertainty, extra-information is needed in
the form of an extra sensor, loop closing data or metric set up
information.

2) Dense Methods: The main limit of feature based VO
estimators is the extraction of the features. Feature-based meth-
ods are fast but can easily fail in contexts where feature
extraction s difficult, such as low textured or blurred images.
Dense methods try to use the whole image instead. The pro-
cess is similar to dense optical flow extraction [17], but instead
of extracting the motion of each pixel, it extracts the underly-
ing camera motion. Clearly, dense methods can achieve better
accuracy than feature-based ones, but are more computation-
ally intense, and only recently some have reached real-time
operation on common hand-held devices or embedded systems,
enabling their use on Micro Aerial Vehicle (MAV) platforms

(21, 3. [4].

B. Learning Methods

While geometric methods mainly make strong assumptions
about what to extract from images and how to use this infor-
mation to compute motion estimation, learning methods try to
infer them from data. The first examples of learning-based VO
are [18)] and [19], where the authors divide each frame into cells

(a) (b)

Fig. 2. Optical flow fields a) feature based (sparse) b) intensity based (dense).

and compute an average optical flow for each block, then they
train a K-Nearest Neighbor (KNN) regressor in the first work
and an Expectation Maximization (EM) algorithm in the sec-
ond. In [9], [20] and [8] a similar feature parametrization of
optical flow is used together with Coupled Gaussian Processes
(CGP) as a regression algorithm.

The common aspect of these previous works is the use of
quantized sparse optical flow, such as Histogram of Optical
Flow (HOF). As far as we know, no previous work on this prob-
lem has proposed learning the representation from data. Since
the recent rise of deep architectures has shown that it is pos-
sible to give to the learning algorithm the plain input and let
it learn the correct representation for the task with impressive
results [21], [22], [23], we propose to apply the same techniques
to the feature extraction part of ego-motion estimation prob-
lem. In order to do so there is the need to stack many stages
of successive filter banks [24], whose coefficients are learned
using unsupervised or supervised methods. In this work, we use
Convolutional Neural Networks (CNN), applying them to dense
optical flow, to learn new visual features at the same time with a
non-parametric motion estimator. The proposed CNN architec-
tures outperform the state-of-the-art F2F estimation approaches
and guarantee robustness with respect to image anomalies (e.g.,
blur, contrast and luminance).

C. Contribution and Overview

Our contribution summarizes to this points:

A) We explore feature selection for ego-motion estimation
using different CNN architectures. The CNN architec-
tures are used to extract new input features starting from
dense optical flow (Figure 2), Three different architec-
tures are proposed: two of them investigate the influence
of global and local optical flow fields with respect to the
ego-motion estimation (i.e., considering both the full flow
image and its different sub-blocks): the last one com-
bine the advantages of the others in a parallel CNN that
exploits both global and local information.

B) We show that the presented learned estimators are able
to estimate motion outperforming other SotA geometrical
and learned methods. In addition the proposed meth-
ods are able to use global information to extract camera
motion and scale information, while dealing with noise in
input.

C) Finally, we show the performances of the presented
method in difficult scenarios, using images with very
different contrast and blur parameters, to show the robust-
ness of the new features extracted by the CNN.

It is important to note that, in this work, we propose to

improve specifically F2F estimation performance. Hence, to



provide a precise and in-depth discussion about this funda-
mental block of any VO approach, we do not consider bundle
adjustment or, in general, procedures that refine the motion
estimates. However, our approach can be easily embedded
into a full key-frame based VO system to reach even better
performances.

This work proceeds as follows: Section Il describes the
foundations of CNNs and the proposed networks architecture;
Section [V presents the experimental sct-up, the dataset and
the performance parameters used; finally, Section V draws the
conclusions and the path of future work.

I1l. NETWORK STRUCTURE

In the following, we first describe how we extract dense opti-
cal flow information and then we discuss the CNN network
architectures used to learn the F2F estimation models.

A. Dense Optical Flow

The input to our network is a dense optical flow
(OF) extracted with Brox algorithm [17]. The Brox strategy
computes the optical flow between two images at time ¢ and
t+1 using a variational formulation that penalizes the total
variation of the flow field by minimizing the following energy
function:

V(u,v) = Vg + al, (1)
with

Valti, 1) = L B(|1(x + w) — I(x)]?
+7|VI(x 4+ w) — VI(x)*)dx
Va(u, v) = L @(|Vaul* + |Vav|?)dx

and where I:0 CR® — R denotes a rectangular image
sequence, W= (u,v, l)T, ® is a concave function (as
described by [17]) and « and -y are weighting parameters.

The computed flow field is then quantized in the common
RGB encoding, as shown in Figure 2(b), so the input dataisa 3
channel, 8-bit depth image.

B. Proposed Network Architecture and Training Procedure

In object recognition and people detection tasks the input
images are smaller than the ones typically used in VO.
Simply applying one of the already proposed architectures is
not straightforward. Down-sampling the image could discard
important information for motion estimate. For this reason,
we tested three different architectures and compared their
performances:

1) CNN-1b VO: As a basic exploratory approach we train

a deep network on the entire OF image after down-
sampling it 8 times with average pooling to reach a
dimension of 155 x 48.
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Fig. 3. Quadrant CNN architecture. The image is divided into four quadrants
and each one passes through a chain of filter banks (CNN1-pooling. CNN2-
pooling). To produce stronger visual features we concatenate the output of
CNN1 and CNN2,

2) CNN-4b VO: The first alternative configuration tries to
exploit local information. We divide the OF image into
four sub-images. Each quadrant is down-sampled 4 times
and then passed through a series of CNN filters analo-
gous to CNN-1b ones. The final layer is trained to use
the output of the four CNN networks to give a global F2F
estimate.

3) P-CNN VO: The last architecture uses the CNN filters of
both CNN-1b and CNN-4b feeding their output to a fully
connected network. We do so to explore the performances
of a network that merges the global information of CNN-
1b with the local information of CNN-4b.

Qur hypothesis for P-CNN is that the information of the two
other networks is partially different, so can be combined to train
a better estimator. In Section IV, we will show that this hypoth-
esis is verified by our experiments. We start the description of
these architectures from CNN-4b, since the structure of CNN-
1b can be described in terms of the first one, and that P-CNN is
the composition of the two.

The architecture of CNN-4b network is shown in Figure 3.
The first section of the network is composed of four branches,
identical in complexity, but trained separately, that perform the
first two convolutional steps (CNN1 and CNN2), Note that each
of the four quadrants of the image contains some motion infor-
mation to compute a motion estimate, with ambiguity between
simple turns and forward moving motion. We then link the out-
put of the first CNN-pooling pair with the second one. We do
so because exploratory experiments on a down-sampled version
of the OF images showed that VO estimators using only CNNI1
output, or only the cascade of the two CNNs, were both able
to learn good estimators, but the VO estimator learned on the
concatenation of the two outputs performed better. This result
shows that CNN 1 and CNN2 extract different information from
the OF images. We presume that CNNI extracts finer details,
while the CNN2 extracts coarser ones, and that this informa-
tion is not completely overlapping. After this stage the four
convoluted features are put back together to form an image that
contains the global information and thus is able to solve the
motion ambiguities with symmetry information. The last layer
computes a fully connected network that uses the information
of all four quadrants at both resolutions, as shown in the upper
part of Figure 4.
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Fig. 4. Global P-CNN network architecture. The capial letuers indicate:
A) 4xQuadrant CNNs; B) [-branch CNN; C) Extracted feature vectors of dif-
ferent sizes; D) Fully Connected Networks for estimation. The output of the
Convolutional layers of CNN-4b and CNN-1b are concatenated and fed to the
FCN of P-CNN.

CNN-1b architecture is similar in shape to a single quadrant
of CNN-4b, but with different image dimensions. The initial
down-sampling brings the image to a size of 155 x 48, so the
CNN1 and CNN2 layers are wider, but maintaining the number
of outputs to 64 and 20 respectively. The max pooling layers
are the same. The last architecture, P-CNN, is a composition of
the other two networks as shown in Figure 4.

C. Training the Networks

Since it is known that training deep architectures in a global
way is an open problem [25], we use the standard greedy-
layerwise method to find good local minima for the filter
coefficients of each layer and then we perform a global train-
ing to fine-tune them. More in detail, for each branch we train
the CNNI1 filter using a fully connected layer next to it to train a
first estimator, then we drop the fully connected layers, feed the
output of CNN1 to CNN2 and train only this one with a new
fully connected estimator. Again we drop the fully connected
layers, concaltenate the two outputs of the CNNs and train a
third estimator. We repeat this procedure for each branch, then
we drop the last fully connected layers and concatenate the four
quadrant outputs into a last fully connected network that trains
the final estimator and fine tunes the CNNs coefficients. The
final fully connected layers for the CNN-1b, CNN-4b and P-
CNN have two hidden layers with (4500,1000), (600, 2000) and
(9000, 3000) nodes, respectively. The whole process requires a
few days with a modern GPU or a few hours with a Tesla K40.

D. Estimation Problem Formulation

We want to model a function f that given the OF of a pair of
consecutive 7. x 1 images, is able to output the camera motion
that has generated it, filtering out the OF disturbances due to
dynamic objects in the scene. The output of the function is
the motion vector y € ) C R that encodes the displacement

- - | Tt =SR] -

E =4 am [=—F R -]

- —1- . T I

- - ——- [= F = -l
(a) (h)

Fig. 5. Application of the convolutional filters to input optical flows. 5(a) and
5(b) show the ontput of CNN1 and CNN2 when processing the optical flow
depicted in Figure 2(b).

of the camera centre and the three euler angles that represent
the camera orientation, while the input x € X ¢ R™™*3 jg
the RGB representation of the dense OF T € R®*™*2 that is
a matrix with OF modulus and phase for each pixel. Thus, our
function is defined as f : X — ).

The first convolutional layer performs /; convolutions on
each input x;,2=1...N of a motion sequence of length
N, producing an output h; ;. € Y ¢ Rv—H+1Dx(m—l+1) jp thig
way:

hij = W} «x; + by 2)
where W}, C R**¥3 | =1...K, are the filter coefficients,
by is a bias and * is the convolution operator. The final out-
put of the network is h; € Y ¢ R(A=HUIx(m=l+1xI0 that js
the composition by the third dimension of every h; x. This out-
put is like an image slightly smaller in width and height, but
with a number of channels equal to the number of convolu-
tion filters. After the first CNNI block we put a max-pooling
operation, that is a highly non-linear function that reduces the
size of the CNN1 output image by 16 times and selects the
maximal response for each non overlapping 4 x 4 pixel tiles
that compose the image. The second convolutional layer per-
forms an analogous operation, but with different filter sizes:
W32 C RY%9%64 | = 1., K> and 2 x 2 max-pooling.

The coefficients of W}, and W are learned in a supervised
greedy layer-wise procedure, as explained in Section III-B,
using fully connected NN with rectified-lincar activation func-
tions

ReLU(x) = maz(0, x) ©)

and using root mean squared loss:
L.
L= ﬁglaf(xs)—yiuz @

A sample representation of the effect of the convolutional
filters after the training phase is depicted in Figure 5.

IV. EXPERIMENTS

To evaluate the proposed approach we run experiments on
a publicly available dataset. In particular, we compare our
ego-motion estimation method based on CNNs (presented in
Section I11) with different SotA baselines. To further explore
the robustness of these architectures, we also perform tests on
artificially modified sequences, adding blur and changing con-
trast and luminance, to simulate adverse recording conditions
such as low-light and motion blur.
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Fig. 6. Example of artificially darkened and blured images a) standard image b) darkened with max conteast 0.4 and gamma 1.5 ¢) blwired with Gaussian blur

radius of 10 pixels.

In the following, we describe the dataset used i evalu-
ate the performances and the baselines used for comparison.
Afterwards, we discuss the results and draw conclusions.

A. Dataset

We test the performances of the CNN-based visual odome-
try on sequences taken from the KITTI benchmark suite {26],
which is a common test bench for many vision algorithms. The
sequences are gathered by a car traveling in the streets of the
Karisruhe city equipped with a Pointgrey Flea2 firewire stereo
camerd, The images are given already undistorted, with a res-
oltion of 1240 x 386 and a frame rate of 10 Hz (in some
sequences the resolution is slightly bigher: in these cases we
perform a simple crop to uniform all the frames). Each pair
of frames is associated with an absolute position with respect
to the world reference frame computed with a high precision
differential GPS and a Velodyne laser scanner. We used only
11 sequences since the remaining ones are not provided with
ground truth. The first 7 are wsed as training input for the
learned methods, described in the following Subsection. and
performances of all the estimators are evaluated on the last three
sequences 08, 09 and 10. Sequence 08 is filmed in the nar-
row streets of a peripheral neighbourhood, with some cyclists
moving and lots of shadows. Sequence 09 presents a path on a
very winding road, with background varying from countryside
to suburbs. Sequence 10 presents a paved winding road with
high slopes and a number of trucks and vans manocuvring in
front of the camera.

In addition, to test the robustness of the baseline and pre-
sented methods, we produced 5 transformed versions of each
test sequence. To do so we changed contrast and gamma 10
simulate different light conditions, and applied Gaussian blur
of different radii to simulate defocus or motion blur. We call
darkened 1 the sequence with max contrast 0.4 and gamma
1.5, darkened 2 the one with max contrast 0.6 and gamma 5.0,
lightened the sequence with min contrast 0.2, max contrast 0.7
and gamma 0.2, and blurred s3 and blwrred 510 the sequences
with Gaussian blur of radius 3 and 10 pixels respectively. An
cxample of these images is shown in Figure 6.

B. Baselines

We compare the proposed approaches (CNN-1b VO, CNN-
4h VO and P-CNN VO) to three different state-of-the-art
baselines: a geometric monocular visual odometry, namely
VISO2-M, described in [13), a regression model based on
Support Vector Machine (SVR VO) as in [27], and a regres-
sion model based on standard Neuwral Network (FCN VO). The
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Fig, 8. Average errors across (8(a) and &(b)) and speeds (3(c) and 8(d)) on tesl
sequences Tar different network architeciures.

implementation of V1S02-M [26] performs frame to frame esti-
mation with some scale recovery using the known distance from
the ground plane, but without bundle adjustment and feature
tracking on other frames, so it is comparable 0 our method.
The input features used for the training and testing of the SVR
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Fig. 11. Trajectories computed with different methods on artificially modified sequences: the first row shows the reconstructed trajectories when images are
darkened (0.0-0.4 contrast, 1.5 gamma), while the second row depicts the resulting estimations with respect to blurred sequences (blur radius 3),

VO are computed following the strategy proposed in [27]): opti-
cal flows are computed on image pairs and quantized to obtain
Histogram of Optical Flow (HOF). The training data, and test
code are available on the accompanying web page [28]. The
other regression baseline is a Fully Connected Neural Network
(FCN VO) that we use to have a direct performance compar-
ison with the CNN+FCN implementations. The training input
is the same as for SVR VO. The network is composed by two

hidden layers of 1000 nodes and 6 output nodes. SVR VO, FCN
VO and the proposed CNN VOs are all trained using the KITTI
sequences 00 to 07, and tested on 08 to 10.

The error metric we use to train the models and evaluate the
performance is the Root Mean Square Error (RMSE) of the dif-
ference between predicted and true translations and rotations.
We test the estimators using the evaluation code proposed in
[26]: for each sequence the performances on different length
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Fig. 13. Averape ervors across sequence lengths (F3(a) and 13(b)) and speeds
(13(c) and 13(d)) on artificially blwired sequences for different estimation algo-
rithins (blur radivs of 3 pixels), The general behaviour 15 similar to the one
shown in Figure 12.

sub-sequences, ranging from 100 to 800 frames, are computed.
Then the average error is computed as the average of the errors
divided by the length of the sub-sequeace. In addition, the
translation and rotation errors corresponding to different speeds
are computed. The results of the experiments on the standard
sequences are shown in Figures 7 and 8, and the reconstructed
trajectories in Figures 9 and 10. Some of the results of the
experiments on the darkened and blurred sequences are shown
in Figures 11, 12 and 13, while the rest are included in the
accompanying web page [28].

C. Discussion

Table [ shows the performances of the baseline methods
and the proposed P-CNN method on the three unmodified test

sequences. Results show that these sequences have differem
charactenistics, and some are more challenging than others.
However, in all the experiments we can observe that the SVR
VO and the proposed P-CNN VO outperform VISO2-M, a SotA
geometric F2F estimator. We omit the detailed results of the
FCN VO because they under-perform all the other methods
(Avg, transl, error 18.17%, Avg. rot. error 0.0626 deg/m), but
its performances can be observed from Figures § and 10.

P-CNN performs better than SVM VO, except in sequence
10. However, the average errors of P-CNN VO are much lower
than the other two methods. In Figare 7 the error contributions
to the average errors divided per sequence fength and speed
range are depicted. From this figure, we see thar P-CNN has
a consistenily lower emor for each length and speed, except
for rotation errors at high speeds, shown in Figure 7(d), where
the rend is inveried. We explain this fact observing that rota-
tions at more than 40Knvh are rare in the KITTI dataset, and
the learning algorithins have few training examples to learn this
behaviour,

In Table Il the performances of different network archi-
fectures are shown. We compare CNN-1b, CNN-4b and the
parallel combination of the two. P-CNN outperforms alf the
other architectures, except again for sequence 10. The fact that
P-CNN has average errors much lower than the two single net-
works that compose it validates our hypothesis that CNN-1b
and CNN-4b extract different information from the images.
Thus, their combination in P-CNN is better than the perfor-
mance of each one. In Figures 9 and 10, the trajectories of each
method are shown for qualitalive comparison.

Performance on darkened and blurred sequences show that
P-CNN performs aimost always better than the baseline meth-
ods in these scenarios, In the comparison we added an SVR
VO using dense optical flow to explore the differences in
performances with the feawres learned by the CNNs. From
Figure 12{c) and 13{c) it is interesting to note that the SVR
performances with dense eptical flow degrades with higher
translational speeds, while the P-CNN are always good. This
result suggests that the increase in robusiness is due to the
features fearned by the CNN, and not o the dense OF per se.
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TABLE 1
COMPUTATIONAL TiME COMPARISON BETWEEN THE PROPOSED P-CNN
ARCHITECTURE AN THE BASELINE METHODS. THE TABLE SHOWS THE
Time REQUIRED TO COMPUTE A SINGLE F2F ESTIMATION. AVERAGED
WITH RESPECT TO EACH SEQUENCE

Finally, we compare the computational costs between our P-
CNN approach and the baseline methods (i.e., VISIO2 and SVR
YO Dense). The performance of VISIOZ, SVR VO Dense and
P-CNN {CPU) are evaluated using a i7-4720HQ 2.60 GHz pro-
cessor, while an NVIDIA Tesla K40 GPU is used to run P-CNN
{GPU). Table 11l shows that our approach takes 50 ms on aver-
age (30 ms to compute the optical flow and 20 ms to perform the
CNN prediction} and, thus, it is well-suited for most real-time
applications. As a final remark, VISIO2 runs at 0.0157 seconds
per image on the blurred version of sequence 10 because it com-
pletely fails to extract features and perform the F2F estimation.

V. CONCLUSION AnD FUTURE WORK

In this letter, we explored the architecture and performances
of an ego-motion estimation approach based on Convolutional
Neural Networks. We showed that this powerful learning
paradigm is able to learn both new visual features and a high
performing estimation mode] to achieve robust ego-motion
estimation. We studied three different network architectures,
comparing them with state-of-the-art ego-motion estimation
methods on publicly available sequences. These experiments
showed that all these architectures were able to autonomousty
select a new data representation that allowed the learned estima-
tors to outperform other methods. We also tested the estimators
on artificially degraded sequences and showed that the new fea-
tures learned by the CNNs make the estimation pipeline more
robust. We find this behaviour very promising, and future work
will explore the performances of the integration of CNNs fea-
ture extractors with other direct and semi-direct SotA VO esti-
mators. In addition, our experiments suggest that deep networks
are very promising in general for VO estimators learning, and
we will conduct further research to experiment with deeper net-
works and different architectures. In addition, since in this work
we focused on F2F estimation, future work will also explore
the improvements that can be achieved by integrating strategies
such as bundle adjustment, scale eslimation, or loop closing.
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Abstract— Obstacle Detection is a central problem for any
robotic system, and critical for autonomous systems that travel
at high speeds in unpredictable environment. This is often
achieved through scene depth estimation, by various means.
When fast motion is considered, the detection range must be
longer enough to allow for safe avoidance and path planning.
Current solutions often make assumption on the motion of
the vehicle that limit their applicability, or work at very
limited ranges duc to intrinsic constraints, We propose a
novel appearance-based Object Detection system that is able
to detect obstacles at very long range and at a very high speed
(~ 300Hz), without making assumptions on the type of motion.
We achieve these results using a Deep Neural Network approach
trained on real and synthetic images and trading some depth
accuracy for fast, robust and consistent operation. We show how
photo-realistic synthetic images are able to solve the problem of
training set dimension and varicty typical of machine learning
approaches, and how our system is robust to massive blurring
of test images.

I. INTRODUCTION

Obstacle Detection (OD) is a challenging and relevant
capability for any autonomous robotic system required to
operate in real world scenarios, for safe path planning
tasks and reaction to unexpected situations. Obstacle pose
estimation must be fast enough to allow robot control system
to react and perform required corrections. Since higher robot
speeds require longer range detection to timely react, OD
in automotive and autonomous aerial vehicle applications is
particularly challenging. Obstacle definition changes accord-
ing to the specific application. In automotive and ground-
based robotic applications an obstacle is usually any vertical
object raising from the ground, such as cars, pedestrian,
traffic lights poles, garbage bins, trees etc. When Micro aerial
Vehicles (MAVs) are considered, some other assumptions
are required. For example horizontal structures, such as tree
branches and overpasses, signs become relevant obstacles,
since robot motion is no more constrained to a well defined
street environment. In these cases the OD system has to be
able to detect any physical object present in the scene.

The main techniques to address the OD problem are
based on visual stereo systems. However, such systems are
limited in detection range and accuracy by camera set-up and
baselines [1], [2], which in turn pose a limit on maximum
speed, and this is a tough constraint both in automotive
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Fig. 1: We propose a fully convolutional network fed with both
images and optical flows to obtain fast and robust depth estimation,
with a robotic applications-oriented design.

and MAV applications, To overcome this limitations some
systems exploited geometric knowledge about obstacles re-
lationships with ground plane and assuming a limitation in
the degrees of freedom of the vehicles movement, allowing
long range obstacle detection up to 200 meters [3] or a real-
time construction of a raw 3D obstacle mapping [4], [5].
[6]. Unfortunately, these methods can’t work in application
where their geometric assumptions are violated and the robot
does not operate at ground level.

Monocular based vision detection systems have been pro-
posed 1o bypass both stereo vision limitations and geometric
assumptions. Since monocular vision does not allow accurate
and robust distance geometric measurement, often machine
learning based solutions have been proposed [7], [8]. Since
learning methods are limited by the training set samples
and these methods have been trained using datasets with
ground truths collected through stereo vision or laser rigs,
these solutions still have limitations on range and accuracy
as stereo systems,

To develop an OD system that is capable of detecting
obstacles at high speed, allowing fast motion without ge-
ometrical assumptions, we propose an hybrid monocular
approach that trades some detection accuracy for speed and
general applicability. We decided to use monocular images
to be able to apply the method on small or micro aerial
vehicles that are able to move up to speeds of 10-20 m/s, for
which a stereo approach would not be viable. In addition, we
address the problem using Deep Neural Networks (DNNs) to
learn an algorithm that is accurate and fast enough to allow
fast reaction to unexpected obstacles on the vehicle path.
To solve the limitations of machine learning approaches,
namely the lack of data and generality of the solution, we
extend the dataset with artificial sequences created using a
state-of-the-art graphic engine capable of producing photo-
realistic outdoor environments. This allows us to add an
arbitrary number of sequences with perfect ground truth
at very long distances (200m), that would not have been

4256



possible to collect with a laser or stereo based ground truth
system. Through our experiments we show that our algorithm
is capable of doing fast estimation of depth with an accuracy
that is sufficient for motion planning and that the learning
on simulated photo-realistic environments is a viable way 10
extend datasets on robot vision problems.

This work is focused on depth estimation for obstacle per-
ception and does not assess planning and control strategies
to achieve effective obstacle avoidance. These aspects will
be considered in future works.

1l. RELATED WORK

Most of traditional vision-based obstacle avoidance works
rely on stereo vision. The most trivial solutions are based on
finding disparities between the two matched images, compate
point clouds and apply heuristics to detect obstacles. This
methedology suffers from range Hmitations, produces sparse
maps and may be not robust to pixel matching errors [9].
Many of these methods are based on v-disparity computation.
Labayrade et al. [10], using a planarity assumption on
stereo cameras, formulates a more robust analytical ground-
plane estimation method based on v-disparify computation.
Benenson et al. [5] use v-disparity and u-disparity to generate
al high rate a fast obstacle representation on 3D space, while
Harakeh et al. {11] build a probability field based on v-
disparity to get & precise ground segmentation and occupancy
prid of the scene. Pinggera et al. [3] improve range and accu-
racy detection using stereo vision to compute local ground
normal as a statistical hypothesis festing problem, petting
detection range up to 200 meters. Pillai et al. [6] propose a
tunable and scalable stereo reconstruction algorithm which
allows scene depth comprehension with very high frame
rates, which may be usable for real time obstacle detection
purposes. The main issue of these methods is that they make
geometric assumptions, requising planarity between stereo
images. Also, methods such as {10}, [5], [11] and [3] utilize
ground model to position obstacles on 3D space, so obstacles
posed over the ground won't be detected by these methods.
Stereo vision has also been used as a data acquisition method
for machine-learnind approaches. Hadsell et al. {12] use a
stereo rig to assign labels to close-range obstacles, detecting
them using geomelric techingues cited above. Features are
extracted from image paiches containing those obstacles
through an offline-trained convolutional autoencoder. A clas-
sifier is trained using these features and obtained labels
as reference. Distant obstacles are then detected by the
online trained classifier. Ball et al. {I3] apply a similar
approach optimized for agricultural applications, based on a
novelty-based obstacle detecior. To overcome stereo methods
geometric constraints, monocular vision-based methods have
been proposed. Mori el al. [14] extract SURF features from
monocular images and use template matching to detect
frontal obstacles from their change in relative size between
consecutive frames. This methad makes no geometric as-
sumption on the scene, but it has no capability to detect
lateral obstacles and has limited range, which makes it
unsuitable for high speed operations. Optical flow based

obstacle detection has been explored in [15], but it tends
to be noisy in images with far away backgrounds, where
optical flow tends (o assume values close {0 zero. Day
et al. [8] implement a imitation learning based reactive
MAV controller based on monocular images, training a non-
linear regressor to detect obstacles distances from features
extracted from several patches of the image, as optical flow,
histogram of oriented gradients, Radon transform, Laws’
Masks and structure tensors. Ground fruth for obstacles is
obtained through a stereo rig. Being a machine learning
based algorithm, it canaot perform better that the hardware
used for training, so detection capability are limited by sterea
vision weaknesses.

In the set of monocular methods, we also consider depth
map estimators. These methods solve a different problem, as
they try to find an accurate 3D reconstruction of the scene,
but we use them as benchmarks for our methads. Michels [7]
implements a reinforcement learning based 3D modsl gen-
erator with real-time capability. [t relies on horizontal align-
ment of the images and does not generalize in less controlled
seuings. Eigen et al, [16] develop a deep learning based
architecture for single image 3D reconstruction trained, on
different experiments, on NYUDepth dataset [17] and KITTi
dataset {18], obtaining state-of-the-art performance in terms
of depth estimation accuracy. Although, for robotic appli-
cation, we're not interested into obtaining state-of-the-art
precision as it would require higher computational costs and
it would be even unnecessary for our purposes, we consider
these methods as reference for estimation performance,

We share with some of these methods the learning ap-
proach based on Deep Neural Networks (DNNs), but we
fetch them not only with monocular images, but also with
the optical flow of consecutive frames. Our architecture
is inspired by recent works in semantic segmentation and
optical flow estimation ([19], [20], [21], [22]), where Fully
Convolutional Networks {(FCNs) have been tramed to make
pixel-wise estimations, obtaining outputs of the same size
of the input image. Differently from standard Convolutional
Neural Network approaches, FCNs do not make use of fully
connected layers, which account for most of the parameters
of the network (e.g. on VGG-16 [23] architecture fully
connected layers parameters are about 120M, out of the
134M parameters describing the whole network), and for this
reason they improve training speed and reduce the amount
of data required to train the deep network [21]. In addition,
since convolution operations can be strongly optimized on
GPU, these neiworks can generate estimates with very high
frame rates.

1I1. NETWORK STRUCTURE

For the network structure we propose an encoder-decoder
architecture, similar to [22], [21] and [20]. Since the problem
we tackle is depth estimation for Obstacle Detection and
not for 3D reconstruction, we design network structure and
complexity to be a good compromise between accuracy and
execution speed.
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Fig. 2: Network architecture. Blue boxes: Encoder feature maps, Green boxes: Decoder feature maps. Convolutional filters are reported

in red, deconvolutional filters in yellow.

A. Depth pixel-wise estimation as an encoder-decoder net-
work

Our proposed architecture is reminiscent of fully convo-
lutional architectures as [22], [21] and [20]. The encoder
section is composed by a stack of convolutional layers,
which apply learned filters on their input and extract relevant
synthetic features. We do not apply naive pooling with an a-
priori chosen strategy, such as max or average pooling, We
choose instead to conveniently stride convolutions in order
to obtain a downsampled version of its input. Convolution
output’s dimensions fggp, and weg,,, are determined, given
an input of size i x w, defining & as the convolution kernel
size, p as convolution pad and s as applied stride, by the
following equations:

h+2s%py —ky
8

hcanu =3

+1 (n

w2 py, —k

LB @)

Weony =

From these equations we can infer how, choosing appropriate
stride and padding, we are able to downsample information
directly from convolutions, allowing the network to learn
the optimal scaling strategy according to the task at
hand. The decoder section is composed by a stack of
deconvolutional layers, which learns to upsample from
the features computed in the encoder section to obtain a
final output of the same resolution of the input, containing
pixel-wise predictions. Other works as [21] or [20] place
unpooling layers between each deconvolutional layer to
reverse pooling operations done in the encoder section;
since downsampling is performed by convolution layers,
we model our deconvolutional layers and learn the most
effective upsampling strategy, as an inverse operation.

Detailed network implementation is shown on Image 2.

Encoder section is composed by five 3 x 3 convolutional
layers. Strided convolutions are applied at the first, second,
third and fifth layer of the encoder section to downsample
feature maps. Padding is added accordingly to maintain
desired feature maps size. ReLU non-linearity is applied
after each convolution output. At the end of the encoder
section, we obtain feature maps downscaled by a factor of
16 compared to network input.

Decoder section is composed by three deconvolutional
layer. Each deconvolutional layer learn to upsample encoder
feature maps by, respectively, a factor of 2 for the first
two layers and a factor of 4 for the final layer, in order
to obtain a final upsampling factor of 16. In [22] and [19]
feature maps computed in intermediate convolutional layers
in the encoder section are concatenated to each intermediate
deconvolutional layer output to improve upsampling quality
and edges definitions. We experimented this strategy in
preliminary experiments; although we came upon a slight
improvement on upsampling quality, we also experimented
a performance degradation in terms of inference time, so
we did not apply this strategy in successive experiments.

B. Image and optical flow as network input

In order to choose appropriate network input, we compare
in our experiments two possible strategies: feeding the net-
work with a single image, currently captured by the camera,
or concatenate current image with optical flow information
between current frame and the previous one. Optical flow
has been used previously as raw feature for obstacle detec-
tors [8] [15]). It is known how relative motion information
between each pixel in two consecutive frames contains some
implicit information about object dimensions and locations
in 3D space. As previous works stated, optical flow alone
is not sufficient 10 obtain a complete and long-range depth
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estimation. Our intuition is to use it as additional information
and let convolutional filters learn optimal strategy (o extract
useful information from it. Mixing together optical flow and
raw image as network input, we expect them o overcome
each other’s limitations and improve performances and gen-
eralization capability in real world scenarios. Oplical flow
during our experiments has been compuied off-line using
widely-used and robust Brox algorithm {24], but faster and
effective algorithms as [22] may be used as well to improve
whole software pipeline real-time performance.

C. Virtual Daraser

Collection of a sufficient amount of training data is a typ-
ical problem for every deep leaming work. Considering how
we formulate our problem of finding obstacles, we explore
existing datasets containing depth ground truth. NYUDepth
v2 indoor dataset [17], Make3D [25] and KITTI outdoor
dawasets {18] are typical choices for depth estimation-related
problems. Make3D and NYUDepth datasets contain siill
images of a scene with no seguentiality between them,
since they are thought for 3D image reconstruction, and this
makes our optical flow-based approach not applicable. KITTI
seguences are grabbed by a camera mounted on a moving car,
making it more appropriate for robotic applications. KITTI
depth ground truth, collected through a LiDAR unit, is sparse
and does not cover the whole image scene. Moreover, images
are generally aligned with ground plane, which may be a
limitation according to the desired operating scenarios.
Motivated by these reasons, we explored the possibility to
collect data from virtwal scenarios, utilizing development
tools generally used in gaming industry, exploiling capabili-
ties of the newest graphic engines. We utilize Unreal Engine
4 with Urban City pack developed by PolyPixel o build
an urban scenario sized about 0.36 km®. No car, person,
or dynamic object is present due to development package
limitations; their inclusion will be considered as future work.
We move a camera, collecting images and dense scene depth
ground truth. Camera moves around the virtual world with
six degrees of freedom, simulating non-trivial movements
that rarely are present in real-world datasets, such as huge
roll or pitch angles with respect to the ground plane. Depth is
stored as a grayscale image: il is converted into metric depth
by scaling each pixel value by a factor obtained through
placing objects in a toy scenaric at knowa metric distance
from the camera. For preliminary experimeats, depth is
collected firstly with a maximum range of 40 meters; in a
second phase, we collected depth measures ap to 200 meters.
Depth measures are spherical with respect of the camera.
More that 265k images have been collected and stored
in PNG format, with a resolution of 1241 x 376 pixels.
Light conditions are changed from time to time to achieve
brightness robustness. Haze is added in some sequences as
well, and motion blur is simulated through graphic engine’s
tools, in order to better simulate real scenarios. Images are
collected as sequences ol consecutive frames captured as the
camera moves arcund the world, at a rate of 10 Hz. We
move the camera both on-road and off-road environments,

far example between trees or light poles, to better simulate
possible realistic application scenarios.

IV. EXPERIMENTS

To validate our work, we perform experiments on our
Virtual Dataset, as described on Section III-C, as well as on
KITTI dataset [18]. We also test our network’s estimation
robustness adding artificial blurring and darkening on KITTI
images, to evaluate neiwork’s performance in presence of
noise. For all of our experiments, we train the proposed
networks on our Vigtual Dataset, divided into a (raining set
composed by about 200k images and a test set of 65k images.
In order to evaluate the generalization capabilities of our
approach, we do not perform any fine-tuning on the KITTI
sequences. Training and testing are performed on a NVIDIA
K40 GPU-mounted workstation.

We update weights during training by using Stochastic
Gradient Descent (SGD) algorithm with a learning rate a =
1073, gradually scaled down during training. Convergence
is reached afier about 50 epochs on training data. We train
our final proposed architecture on Log RMSE (3), in order Lo
penalize more eirors on close obstacles than ones committed
on long range estimations:

1 i
J; 3 llogy: — logy! |} 3

Yer

Exploratory experiments are also performed with a linear
RMSE loss, as specified later in Section IV-A,

Network inference time, without taking into account optical
flow computation, is about 34 ms (~ 300Hz) on K40 for
each frame, which alfows optimal scalability into complete
embedded robotic software pipelines. Brox’s optical flow
algorithm used for our experiments runs at about 108 2, but
much faster algorithms, as [22], could be used as well.

The benchmark metrics for our comparisons are:

« Threshold error: % of y; s.t. max( f—.— -’é:) =4§ < thr

« Linear RMSE: \/ + Soverlly— il

« Scale-invariant Log MSE {as introduced by {l6]):
Ly & — (X, d;)?, with &; = logy; —logy;

A. Virtual Dataset

Single Image | Opt. Flow+lmg.
thr. 0 < 1.25 0726 0.774 Higher
thr. § < £.25% 0.924 0.938 is better
RMSE 3819 3478 Lower
Log RMSE 0.246 0221 is
Scale Inv. MSE 0.065 0.055 beter

TABLE I Experiments results on virtual dataset for ground (ruth
cotlected up 10 40m.

We initially perform exploratory experiments on Virtual
Dataset test set to compare the performance of the two
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Fig. 3: Some images from Virtual Dataset, highlighting lighting conditions and captured motion’s diversity comprised into the dataset

proposed architectures (as described in Section [11-B). Net-
works are trained by using sequences with ground truth
depth collected up to 40 meters, using Linear RMSE as
training loss. Quantitative results are shown in Table I: the
network that processes optical flow inputs outperforms single
image network with respect to all the metrics, showing the
effectiveness of the proposed optical flow+image network.

Afterwards, we compute metric depth up to 200 meters
and re-train the optical flow-based architecture on log RMSE
and linear RMSE (see Table II)., The results show that
the network based on the log RMSE loss achieve better
performance with respect to the linear one.

Log RMSE | Linear RMSE
thr. 4 < 1.25 0.643 0.482 Higher
thr. § < 1.25° 0.887 0.764 is better
RMSE 6.065 7.004 Lower
Log RMSE 0.292 0.416 is
Scale Inv. MSE 0.085 0.154 better

TABLE II: Comparison between the optical flow+image network
trained on Log RMSE and the linear RMSE

B. KITTI daraser

We perform experiment on KITTI dataset [18]. The se-
quences are gathered with a Pointgrey Flea2 firewire stereo
camera mounted on a car traveling in the streets of the
Karlsruhe city. Images are undistorted and collected with a
resolution of 1240 x 386 and a frame rate of |0Hz. As the
provided depth ground truth is sparse, we compute dense
ground truth by using the colourization routine proposed
in [17]. Furthermore, since LiDAR provides ground truth
measures only for the bottom half of the scene, experiments
are performed with respect to that portion of data. Perfor-
mance are evaluated on a test set composed by 697 images,
corresponding to the published results of [16]. We first run
exploratory experiments to evaluate the optical flow based
architecture, re-using network weights trained on a maximum
detection range up to 40 meters, as described in Section I'V-
A. Results are provided in Table III.

Finally, we perform experiments on our optical flow-based
network trained for detection up to 200 meters, and we
compare its performance with respect to state of the art depth

Single Img. | Optical Flow+Img.
thr. § < 1.25 0311 0421 Higher
thr. § < 1.257 0572 0.679 is
thr, § < 1.25° 0.764 0.813 better
RMSE 7.542 6.863 Lower
Log RMSE 0.574 0.504 is
Scale Inv. MSE 0.206 0.205 better

TABLE [11: Results on KITTI Dataset on our architectures trained
with a detection range< 40 meters

predictors. In particular, we compare our performances with
Eigen et. al [16] and Saxena et al. [25]. It is important to
notice that these approaches are both trained and tested with
respect to the KITTI sequences. Conversely, in order to prove
the generalization capabilities of our approach, we train our
network with respect to the Virtual Dataset sequence and test
on the KITTI sequences without any fine-tuning procedure.

We report results in Table IV. For Saxena et al. work, we
refer to the results provided in [16]. Although we do not
perform any fine-tuning with respect to the real sequences,
we obtain similar performance with respect to state-of-the-art
approaches that are trained and tested on the same scenario.
Furthermore, our network outperforms the other methods
with respect to the scale invariant Log MSE metric that
penalizes relative scale errors without considering absolute
scale imperfections. Hence, we infer that our approach
provides a accurate estimates with respect to relative depths.

The performance that we achieved with respect to linear
RMSE and log RMSE metrics, suggest that our network
weaknesses lie on close-range estimations, as log RMSE
penalizes more mistakes on small values. We acknowledge
that, for obstacle detection tasks, there are more robust
methods than can detect close obstacles, such as laser sensors
or stereo cameras. Thus, we believe that our approach could
definitely improve depth estimation performance if combined
with approaches tuned for short range detections.

C. Testing network robusiness

To test the robustness of our approach on different scene
conditions, we performed additional experiments on the
KITTI sequences, by producing transformed versions of each
test sequence. To do so we changed contrast and gamma
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Fig. 4: Qualitative results on the Virtual Dataset, On the first row RGB input images are depicted. The second and the third rows show
the network predictions and the dense ground truths, respectively.

Our network | Figen et al {16] | Saxena et al. [25]
thr. § < 1.25 0318 0.692 0.601 Higher
thr. & < 1.25° 0617 0.899 0.820 is
the. 6 < 1 25° 0813 0.967 0.926 bater
RMSE 7.508 7.156 8734 Lower
Log RMSE 0.524 0.270 0.361 is
Scale Inv. MSE 0.196 0.246 0.327 betier

TABLE [V: Results on KITTI Dataset

Fig. 5: Qualitative results on KITTI dataset. The first row shows the input RGB image, while the second row and the third rows show
the network prediction the dense ground truth obtained by using the colourization routine, respectively,

2

{q) Blurred image with radius = 3 (b) Blurred imige with radius = 10 () Durkened image with miax contrast = 0.4 and
gamma = L5
Fig. 6: Some atificial soise-added images as they have been tested in our experiments.
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Plain | Blur rad:3 | Blur rad:10 | Darkened
thr § < 1.25 0.318 0.244 0.142 0.176 Higher
thr. 5 < 1.257 || 0617 | 0525 0.350 0.348 is
thr. 4 < 1.25% || 0.813 (.741 0.573 0.509 beuer
RMSE 7.508 8.126 9,483 9.645 Lower
Log RMSE 0.524 0.606 0.792 0,923 is
Scale Inv.MSE 1 0.196 0.209 0.240 0.346 better

TABLE V: Results abtained on KITT! dataser applying Gausstan blur to images and changing lghting conditions.

to simulate different light conditions, and applied Gaussian
blur of different radius to simulate defocus or motion biur. In
particular, we add a gaussian blur with 4 radius of 3 (we refer
to this experiment as Blurred Image rad:3, Figure 6(a) ) and
10 pixels {(Biurred Image rad:10, Figure 6(b) ) and change
image lighting by setting max contrast to 0.4 end gamma
to 1.3 (Darkened Image, Figure 6(c} ). The results of the
evaluation with respect to these sequences are shown in Table
V. It was not possible to test Eigen et al. method on blwred
images since they did not publicly release their network’s
weights trained on KITTH dataset, so we compare our resulis
with their performance on non-blurred images. On Blurred
Image rad:3 experiment our performance is still better than
Eigen et al. in terms of scale invariant log MSE error even
after noise addition, and experience just a slight performance
deterieration on other metric. On the Blurred Image rad:10
and Darkened Image experiments, the estimations are less
accurate, but results remains acceptable and comparable with
other techniques on scale invariant log MSE metric, These
experiments, thus, demonsirate our network capability to
perform acceptable estimations even with very noisy images.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore the architecture and performances
of a depth estimation algorithm based on a Encoder-Decoder
Convolational Neural Networks architecture, The proposed
algorithm is intended to be the foundation of an Obstacle
Detection system, meant to be run by fast vehicles, We
address the limitations of stereo systems using a learning
approach trained on synthetic images with long range ground
tuth, We test two kind of inputs, monocular images and
monocular images with optical flow. Both networks trained
on synthetic data have shown, compared to state-of-the-art
methods, good performances on real data, suggesting that
this training strategy is able to overcome some weaknesses
of leaming approaches, such as generalization and training
data availability. In addition, we showed how the proposed
algorithm is capable of estimating depth even when the
starting images have been corrupted with blur, darkened or
lightened. In future work we plan to increase network’s
robustness augmenting virtual training data, also adding
dynamical objects to the scene. In future works we will
consider finctuning on real images to improve performance.
In addition we plan to integrate our depth estimator together
with semantic segmentation algorithms and object detectors
to obtain a semantic knowledge of the scene, useful fo infer

information about estimation uncertainty and model more
robust interpretations of the scene.
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A Robust Semi-Semantic Approach For Visual Localization In Urban
Environment

Silvia Cascianelli!, Gabriele Costante!, Enrico Bellocchio!, Paolo Valigi', Mario L. Fravolini!
and Thomas A. Ciarfuglia’

Abstract— This paper provides a new contribution to the
problem of vision-based place recognition introducing a novel
appearance and viewpoint invariant approach that guarantees
robustness with respect to perceptual aliasing and kidnapping.
Most of the state-of-the-art strategies rely on low level visual
features and ignore the semantical structure of the scene.
Thus, even small changes in the appearance of the scene (e.g.,
illumination conditions) cause a significant performance drop.
In contrast to previous work, we propose a new strategy to
model the scene by preserving its geometrical and the seman-
tical structure and, at the same time, achieving an improved
appearance invariance through a robust visual representation.
In particular, to manage the perceptual aliasing problem,
we introduce a covisibility graph, that connects semantical
entities of the scene preserving their geometrical relations,
The method relies on high level patches consisting of dense
and robust deseriptors that are extracted by a Convolutional
Neural Network (CNN). Through the graph structure, we are
able to efficiently retrieve candidate locations and to synthesize
virtual locations (i.e., artificial intermediate views between two
keyframes) to improve the viewpoint invariance. The proposed
approach has been compared with state-of-the-art approaches
in different challenging scenarios taken from public datasets.

[. INTRODUCTION

Self-localization ability is a crucial feature requested to
future robotic systems in order to operate autonomously in
complex urban environment. In this context, loop closure
detection [1], based on machine vision, is an essential
building block. Most of the existing approaches have been
developed using low level features and have been tested using
datasets having similar viewpoint and lighting conditions.
In this simplified scenarios, state-of-the-art algorithms often
achieve very good performance. However, when datasets
with even small changes in viewpoint and appearance are
considered, these algorithms often fail, because approaches
based on low level features are typically sensitive to image
gradients. For this reason, recent studies are moving toward
the adoption of higher level visual features that have a
closer relation to a semantic description of the environment,
thus providing an increased robustness to viewpoint and
appearance changes. [n particular, the application of CNNs as
object detectors and descriptors has shown promising results
is several studies. The rationale behind place recognition
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Fig. 1: Covisibility Graph of landmark example: nodes are
patches extracted by Edge Boxes, described by the output
features from conv3 layer of AlexNet, and are connected by
an edge if they have been detected in the same image during
environment traversal.

approaches that tend to rely on semantic objects in a scene
is that the visual content of the image identifies specific
semantic aspects of the place we are looking at and, at the
same time, is robust to differences in visual conditions, since
semantic information is unaffected by changes in viewpoint
and appearance, However, sometimes, the presence of the
same sel of semantic objects is not enough to unequivocally
identify a specific place (consider for instance the presence
of objects such as cars of the same model, trees, lamps in
a suburban scenario). To address this challenging situation
the localization algorithm should be able to discriminate
different spatial configurations of multiple objects.

Driven by the previous considerations, we propose a vision
based place recognition approach that relies on visual fea-
tures extracted by an inner layer of a pre-trained CNN run
on image patches containing a semantic object, that increases
robustness with respect to appearance changes. In addition,
we face the viewpoint change problem by modelling the
environment as a graph of semantic objects, thus exploiting
also their arrangement to facilitate the place recognition task.
The main contributions of this work are:

« The combination of appearance invariant features ex-
tracted from a pre-trained CNN with a graph based
model of the environment that enhances viewpoint
robustness

e The decrease of the perceptual aliasing problem by
means of a semantic agnostic object extractor

= The automatic incremental building of a palch gallery



of the environment while exploring it
The remainder of this paper is organized as follows: In
Section 1, we discuss related research works, while the
pipeline of the algorithm is described in Section 1. Section
IV provides experimental results. Conclusion and future
development are discussed in Section V.

II. RELATED WORK

Place recognition and loop closing are strictly related tasks
that ave particularly important for the awtonomous robotic
navigation in unknown environments. The main challenges
encountered during the visual navigation in real scenarios
arc viewpoint changes and appearance changes due to illu-
mination and seasonal variations or to the presence in scene
of moving parts.

1) Appearance invariant approaches: This issue can be
addressed via change removal methods, as in [2], or via
change prediction, as Neubewnt et al. in [31, or by directly
applying visual descriptors that exhibit invariance properties
to appearance, as in (4} In this work the authors trained
a multi-layer perceptron model for leaming an appearance
invariant feature descriptor. Among appearance invariant
descriptors, leatures obtained from inner layers of pre-trained
object recognition CNNs have shown their effectiveness, as
demonstrated in [5].

2) Viewpoint invariant approaches: Viewpoint changes
are usually more critical than appearance changes. This issue
is generally addressed in an application dependant fashion,
both by applying image rectification methods in case of
mild viewpoint changes {6], or by considering the specific
type of changes in the viewpoint that wiil be encountered
while performing a specific task, e.g lane traversal in [7],
panoramic vision in {8] or air-ground viewpoint change in
9.

3) Appearance and viewpoint invariant approaches: Sce-
narios that feature both viewpoint and appearance changes
are particularly challenging for the loop closure detection
task. Promising solutions usually rely on CNNs specifically
designed for place recognition, as done in [10] or on features
extracted from a CNN designed for object recognition, as in
f11), or viewpoint synthesis as done by {12}, or exploiting
robust sequence matching techniques, as in [7].

4) Graph-based approaches: Modelling the environment
as a graph requires the definition of what a “node is” and
of a criterion to link nodes. In order to preserve geometric
information, [13], [14} proposed the employment of a geo-
metric graph that is based on the distance between centres
of 3D point cloud or 2D patch around a landmark, A
recent work by Pepperell et al. [15] focused on maze urban
environments and used roads as directed edges connecting
intersections to facilitate sequence matching in place recog-
nition. Another general criterion for building graphs of the
environment, while dealing with bidimensional images, is
based on the covisibility of the landmarks, i.e. an edge is
created between landmarks if they are present in the same
image. This approach was propesed by [16] and was also
adopted in this work, with the important difference that,

instead of using hand-crafted descriptors, we use features
extracted by a convolutional layer of a pre-trained CNN
thal receives in input unprocessed image patches. Using a
graph to model the environment allows the integration of
additional information from other sources, such as robots
or other intelligent systems. Hence, it provides a framework
that ¢can be casily integrated with netweork information, and
with other environment specific visual object galleries in a
Transfer Learning paradigm [17].

1. STRUCTURE OF THE ALGORITHM

In this work, we propose a vision based approach that
faces, at the same time, viewpoint and appearance changes.
Image patches having a semantic content, called Edge Boxes,
are extracted using the algorithm proposed by Zitnick et al.
in [18]. Thesc visual patches are then processed by a pre-
trained CNN and the output of an inner layer is taken as
the descriptor in order to obtain featores that are invariant
to appearance changes. These intermediate CNN landmark
objects constitute the nodes of a covisibility graph, that are
connected by an unweighted and undirected edge if the
corresponding landmarks are observed in the same image
along the path (see Fig. 1), Furthermore, landmarks that are
labelled as "the same landmark™ are mapped in a unique
node, thus the resuiting incremental graph embeds a sort
of a landmarks gallery of the environment. At query time
the algorithm extracts the sub-graph of covisible landmarks
of the query image and the associated collection of gallery
clements. By using the gallery, previous images that share a
fraction of the actual features are retrieved and their covisi-
bility graphs are merged to synthesize “virtual tmages™ that
can help the matching of the cumrent frame thus facililating
the loop closure. Source code of our approach is available at
http://wew.sira.diei.unipg.it/supplenentary/GOCCES,

A, Meodelling the environment as a graph

Inspired by the work of Stumm et al. [16], we build a
covisibility graph that models the environment as a structured
collection of visual patches. Each patch contains an object
with high probability, however our method does not rely on
the specilic class of object, ie. it works at a semi-semantic
level. A user defined number of patches {50 in our experi-
ments) have been extracted with the Edge Boxes algorithm
by {18], which are of varying size and contain an intelligible
object. These patches are then used as input of the pre-
trained AlexNet CNN [19]. Based on the analysis reported
in [5} we decided to select the output of the conv3 layer as
the descriptor of the patch, because it exhibits appearance
invariance properties. Note that this layer produces a vector
of 13 x 13 % 384 = 64896 components for each input patch.
In order to reduce computing time we decide to reduce the
dimensionality of the above descriptor via Gaussian Random
Projection [20], that also approximates the cosine similarity
between conv3 outputs, thus obtaining a reduced vector of
length 2048. So obtained Jandmarks are used as nodes of
the covisibility graph model of the environment that has to
be built. Nodes associated to landmarks in the same image



() Example of Edge Boxes landmark extructed from images encountered
at rime k — 1 (left) and at time & (right) respectively
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(b) Landmark covisibility subgraphs of images encountered w time & — 1
(left) und at time K (right) respectively: landmurks that are seen logether
are connected in a dense gruph

(¢) Landmark covisibility whole graph at time & — 1 (left) and at time k
(right) respectively. Sufficiently similar landmarks are mapped to the same
node, while different landmarks give rise 1o new nodes

Fig. 2: Covisibility graph construction while incrementally
traversing the environment

are all connected by an undirected edge Lo encode their co-
presency. This implies that each image is associated to a
connected subgraph. The complete graph is represented by a
clique matrix M, yiq,.. Whose rows represent landmarks and
columns represent image indices, so that a | in [Myiqueli.s
means that the landmark [ is present in the image f. An
illustration of the graph building process is shown in Fig. 2.

B. Mapping landmarks in the same node

Landmarks that belong to consecutive images are mapped
in the same node of the graph when they are recognized Lo
be the same landmark (patch). The similarity is computed
by means of the scalar cosine distance d;; between the
landmark’s feature vector [.; of the current image and its
nearest neighbour [, ; taken from all the previous images. For
each nearest neighbour pair of landmarks we also calculate
the similarity of the geometric shape, in terms of width w, ;
and wy, ; and height h.; and hy, ; of their bounding boxes.
The overall similarity between landmarks in the current
image and their nearest neighbour in the previous ones is
then computed as:

1 Iogi—wp gl o Iheu—thpyl
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Finally, landmarks are labelled as the "same landmark™ (and
mapped in the same node of the graph) in case the overall
similarity L;; is larger than a user defined threshold (set
to 0.3 in our experiments). This mapping is transiated into
graph clique matrix update. Namely, a new column is added
for the current image, which has |s in the existing rows
corresponding to already observed landmarks and. in case the
landmarks are recognized to be new, new rows are allocated,
that have Is in the last column. corresponding to the current
image. where they first have been observed.

This allows us to consider the clique matrix as an inverted
index of the images. In fact, by looking at the row of the
clique matrix which is associated to a landmark, positions of
ones in the matrix represent the indices of images in which
that landmark has been observed. This last aspeel is very
useful at query time since it allows to efficiently retrieve the
subset of stored images that share the at least a landmark
with the query image. The subsequent comparison is carried
out considering only the subset of retrieved images.

It is noteworly that, in order to speed up the search of
incoming landmark’s nearest ncighbor, we exploit the KD-
Tree algorithm by [21], that organizes landmark descriptors
in a tree structure based on their distance. The tree can then
be explored in order to find the query landmark’s nearest
neighbour in logarithmic time. It should be noticed that
the above algorithm works only with distance metrics that
are component-wise additive and monotonically increasing
with components addition, as in case of the Euclidean
distance. Cosine Similarity is more suitable than Euclidean
distance for high dimensional data, but does not exhibit
the characteristics required for the employment in KD-
Tree construction. Thus, we calculate the Euclidean distance
between [»-normalized feature vectors and then applied the
following transformation:

d.E'ucﬁdeun.ij

2
where dgyctidean.ij i the Euclidean distance between the
%andmnrks [, in the current image and [, ; in the previous
images.

diy=1- (2)

C. Svathesizing virtual locations

When a scene is revisited by the autonomous agent it is
reasonable to assume that a modification of camera view
point occurred. This implies that in the new scene some
detected landmarks can have different relative position, other
can be occluded, while some new ones enter in current view.
In order to face this important issue, considering matching
candidate images (selected and retrieved with the procedure
explained in 11I-B), we compute new virtual locations by
fusing their subgraphs if they share a sufficient large number
of landmarks, f.e. at least the half of the fixed number of
patches extracted in each image. In this way, we obtain an
interpolated view between contiguous images, thal enhances
the scene database with additional virtual views as done
for instance in [16]. Those virtual locations can facilitate
maltching and loop closure detection.



D. Recognizing places

Retrieved real and virtual locations are then scored to
establish if they match with the current query location. The
similarity measure is derived considering the landmarks’
feature vectors and the shape parameters of their bounding
box. In this way, it is possible to compute a similarity
score between each pair of landmarks, both in the currant
and previous images, L;;, as it has been made for tracking
tandmarks during graph building phase (see HI-B), but in
this case in a very limited search space, ie. landmarks
in the guery image are only matched against those in the
candidate (either real or virtual) location under investigation.
The score of matching images is assigned as the mean value
of individual scores of matching elements. At this point the
information embedded in the graph is used to reline the
above computed matching scores. Considering the clique
matrix columns of query and candidate images, we obtain
the adjacency matrix of their landmark covisibility subgraph.
This matrix has as many rows and columns as the number
of nedes that define the graph and models the connectivity
between pairs of nodes with zeros {(not connected) and ones
{connected) in corresponding positions. Adjacency matrix
can be easily obtained as Af = H(MJ, .- MJL ), where
H{-} is the element-wise heaviside step function. Notice that
during graph construction nodes are kept ordered, thus rows
and columns indices of the adjacency matrix refer to the
same node in both query and candidate images subgraphs.
This allows subgraphs to be aligned [22] and their direct
comparison is possible by means of their adjacency matrix.
We then colculate a normalized cross-correlation between
candidate and query adjacency matrices as:
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where Aj; and Af;-“ are the adjacency matrix entries relative
to landmarks {; and [; in the graph of query location € and
candidate location P, respectively.

We "filter” the similarity score of cach candidate location
by maintaining normalized cross-correlation values that were
lower than 0.1, as:

. er, iftyop, <0.1
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The so obtained ¢ p, is used to weight the similarity score
of each candidate location, thus filtering out matching scores
of candidate location which landmark amangement was (oo
different from that one of query iocation. The resulting

matching score is:
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where 7 is the number of landmarks in the current image.
In addition, we assign each image the mean matching score
obtained both as a real location and as part (seed) of one or
mor¢ virtual Jocations.

IV. EXPERIMENTS

The experimentation was carried out considering 1wo
benchmark loop closing datasets for evaluation, namely the
City Centre dataset [23] and the New College dataset [23],
that have been subsampled at different rates, while parameter
tuning has been made on a different third dataset. Qur ap-
proach was compared to a “low level features”™ approach [23]
and 1o a "high level features approach” [11]. The comparison
was done in term of a classical precision-recall analysis.
Finally, to better highlight the role of virtual locations for
loop closure detection, an additional study was conducted
by analysing the performance of our approach in case the
virtual locations information is excluded.

A, Datasers

Both datasets consist of left and right view images col-
lected “roughly” with a spatial frequency of 1.5 m by a
Segway robot along a 2 km path in a urban environment for
the first dataset and a 1.9 km path in a university campus
for the second one. Note that, since right and left images
collected at the same time are mostly independent from each
other, we concatenated each pair and considered the new
“panoramic” wider images in our experiments.

1) City Centre dataset: This dataset is considered parlic-
ularly challenging due to the presence of dynamic elements,
such as pedestrians and vehicles in the scene and instability
due to shadows and foliage.

2) New College dataset: In this, the trajectory is particu-
larly articulated and presents many loops and stretches that
are traversed also in opposite direction. Also this datasel
contains many dynamic clements, such as pedestrians, and
repeated features since it was acquired in an area that
includes similar repeating walls, archways and bushes,

B. Experimental Senup

Our algorithm was tested by incrementally building the
covisibiliLy graph (starting {rom scratch) as the robot follows
its path. The current frame is considered as the query for
the loop closing algorithm. In order to asses the benefits
of the proposed covisibility graph, we subsampled the lest
datasets at different rates and compared the results in term
of precision and recall. In this framework we have compared
performance of our approach (refemed to as ‘GOCCE’ -
Graph Of Covisible CNN Extracied features - in the foi-
lowing) with those of:

o A state-of-the-art algorithm that exploits low level fea-
tures and does not use a graph for environment rep-
resentation. The selected algorithm is the well-known
FABMAP [23]

o A technique that is based on the high level features
extracied by Edge Boxes and AlexNet conv3, that were
also used in our work, but does not use any graph-based
representation of the environment, namely the approach
proposed by Sunderhauf et al. in [11}. This algorithm
was re-implemented and used in incrementally fashion
as done in our approach
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Fig. 3: Precision-recall curves for comparison of different
techniques with respect to our approach on not subsampled
New College dataset

« A reduced version of our approach that does not include
the construction of virtual locations

C. Results

Fig. 3 shows the precision-recall curves obtained with
different approaches on the not subsampled New College
dataset. In this case FABMAP obtains the higher recall at
high precision, but its performance decrease significantly as
the recall grows. It is important to underline thal FABMAP
was pre-trained using a dataset collected in the same en-
vironment as the one of the New College dataset. For this
reason its performance expected to be superior. In fact, while
tested on a different dataset, namely the City Centre dataset,
our method significantly outperforms FABMAP (this trend
can be observed in Fig. 4a, where precision-recall curves
for not subsampled City Centre dataset are compared) and
is slightly better than the graph-free approach. In fact, at
90% precision the method by Sunderhauf et al. in [11]
obtains 88.47% recall, our reduced method 87.41% while our
complete method 89.03%; in case of 90% recall the graph-
free approach obtains 84.639 precision, the reduced version
of our approach 86.03% and the complete approach 87.96%.
The role of the covisibility graph and, in particular, the role
of virtual locations, can be understood by comparing the
results achieved with subsampled datasets. In Fig. 4b and
Fig. 4e the precision-recall curves obtained in the City Centre
dataset with subsampiled images (decimated at a rate of 3
and 10) are shown, By analysing the above results we can
observe that a severe subsampling enhances the utility of
virtual locations, since, due to subsampling, some landmarks
arrangements can result not previously seen. Thus, virtual
locations including those fandmarks allow real locations
from which they have been created to be matched to the
query image. This translates in a higher recall at maximum
precision on subsampled datasets and higher precision at
high recall. In this respect, note the precision values at 90%
recall: it is 78.85% for the method of Sunderhauf et al.
in [11], 80.39% for the version of our approach that does
not exploit virtual locations and 87.05% while using virtual
locations, Finally, it is noteworthy that in case of higher
sampling rate, refining the matching score via candidales
retrieval and subgraph comparison causes improvements in
both precision and recall, while the performance of the

approach including virtual locations are minor, especially in
terms of precision at high recall. This is due 1o the fact that
the virtual locations construction process we applied in this
work has no constraints but the number of shared nodes. thus
rcal dataset images arc forced to merge in order to build new
virtual locations even when not needed.

In Fig. 5 it is shown the planar path traversed by the robot
in the City Centre dataset, and it is underlined the GPS
position of the subsampled images and that of seeds real
locations. Note that virtual locations are oflen created near
curves and angles and in stretches traversed with slight Tateral
displacement. Furthermore, we observe that large decimation
ratios can lead to a significant decrease in the number of
new virtual [ocations, especially near 90 trajectory corners.
This because due to decimation the visual overlap between
subsequent images can be lost during a turning manocuvre,

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an environment agnostic, ap-
pearance and viewpoin( invariant place recognition system,
that is also robust to perceptual aliasing. The method is
based only on machine vision images. These desirable
characteristics were achieved by effectively and, in some
extent, geometry preserving maodelling the environment via
a covisibility graph, whose nodes are features extracted by
the inner convolutional layer of a pre-trained CNN that are
remarkably robust to appearance changes.

Experimental validation has shown that our approach pro-
vides performance improvements comparable with state-of-
the-art place recognition techniques and outperforms these
methods in particularly challenging scenarios.

The representation of the environment as a graph of land-
marks also eases the integration of additional information
from other sensors and can be further enriched with infor-
mation about the reliability of semantic elements that served
as nodes, that could be moving objects.

A possible extension of this work can consider the matching
of sequences of images from the datasets, rather than match-
ing of single images. Another interesting direction could
be the construction of virtual locations via a parameter-
free approach based on locai graph clustering via subgraphs
connectivity.
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Oggetto:
Approvazione atti, e
graduatoria di merito per
il conferimento din. 1
borsa di studio procedura
di selezione comparativa
D.D. 111/2016 - Resp.
Prof. Andrea Di Schino

VISTO

VISTO

VISTO
VISTO

VISTO

VISTO

Allegato N, i al punto
dell'ordine del giorno N, 5 .

Dipartimento di Ingegneria
Universita degli Studi di Perugia

Decreto n. 120/2016

Il Direttore

il Regolamento concernente il conferimento di borse di studio per la ricerca e la
formazione avanzata, emanato con DR. N. 1527 del 05/07/2005;

il chiarimento interpretativo sull'art.18 c¢. 5 L. 240/210 espresso

dall’Amministrazione Centrale di questo Ateneo con Circolare Prot. 2014/0017480
del 10/06/2014;

il D.L. n. 5/2012, art. 49, comma 1, lettera h), p.5;

il Progetto di Ricerca “Sviluppo di un processo innovativo per la produzione di leghe

ad elevata resistenza meccanica”, cofinanziato dalla Fondazione Cassa di Risparmio

di Terni e Narni, di cui & Responsabile Scientifico il prof. Andrea Di Schino e

nell’ambito del quale & previsto il finanziamento di borse di studio (Rif. Richiesta di

contributo Dipartimento di Ingegneria del 15/03/2016 e Approvazione richiesta da

parte della Fondazione CaRiT del 29/04/2016);

il D.D. n. 103/2016 del 15/11/2016 che autorizza la spesa e I'emissione del bando
per l'attribuzione di n. 1 Borsa di Studio Post Lauream dal titolo “Sviluppo di un
processo innovativo per la produzione di leghe ad elevata resistenza
meccanica” per |o svolgimento di attivita presso il Dipartimento di Ingegneria;
I'avviso di procedura comparativa D.D. n. 111/2016 pubblicato in data
29/11/2016;

ESAMINATI i verbali della riunione della Commissione giudicatrice redatti in data

16/12/2016;

VERIFICATA la regolarita della procedura,

DECRETA

Art. 1 - Sono approvati gli atti della procedura di valutazione comparativa D.D. n.
111/2016, per il conferimento di una borsa di studio, per I'espletamento di attivitd presso il
Dipartimento di Ingegneria, della durata e per I'importo ivi indicati;

Art. 2 - E’ approvata la seguente graduatoria di idoneita della procedura di valutazione
comparativa di cui all‘art. 1 del presente decreto:

1~ - NAPOLI GIUSEPPE (85/100)

Art. 3 - E' dichiarato assegnatario della selezione di cui all’art, 1 del presente decreto il
Dott. NAPOLI GIUSEPPE a cui si conferisce la borsa di studio oggetto della sopra
richiamata procedura comparativa.

Il presente decreto sara portato a ratifica del prossimo Consiglio di Dipartimento.

Perugia, 19/12/2016

I] Direttare
iuseppe S o di

%.



Oggetto:
Trasferimento
Responsabilita
Scientifica su
progetti di ricerca
del Dott. Marco
Ricci

Il direttore del DING

Allegato fl. i. al punto

dell'ordine del giorno N. 23..

UNIVERSITA DEGLI STUDI DI PERUGIA
Dipartimento di Ingegneria

Decreto n. 121 del 22/12/2016
IL DIRETTORE

VISTI gli artt. 41 dello Statuto e 94 del Regolamento Generale di Ateneo;
CONSIDERATO |art. 10 del Regolamento di funzionamento del Dipartimento

di Ingegneria;

VISTO La richiesta inoltrata in data 22/12/2016 dal Dott. Marco Ricci, nella
quale si richiede di trasferire la responsabilita scientifica del proprio progetto
“*NDTonAIR” H2020-MSCA-ITN-2016 al prof. Piero Burrascano, mentre per la
convenzione di ricerca applicata in essere con la “Societa delle Fucine” al

Dott. Luca Senni ;

CONSIDERATO che dal 30/12/2016 il Dott. Marco Ricci prendera servizio
presso |'Universita della Calabria;
VISTA pertanto l'urgenza di procedere l'iter degli assegni di ricerca banditi

nell’'ambito del progetto "NDTonAIR” ;
DECRETA
A) - Di procedere alla variazione della responsabilita scientifica del progetto

“NDTonAIR” H2020-MSCA-ITN-2016 individuando nella persona del prof.
Pietro Burrascano quale nuovoe responsabile;

B) Di procedere alla variazione della responsabilita scientifica della
convenzione di ricerca applicata con la “Societa delle Fucine” individuando
nella persona del Dott. Luca Senni quale nuovo responsabile;

Il presente decreto sara sottoposto a ratifica del prossimo Consiglio di

Dipartimento.
Perugia, 12/12/2016

eppe Saccomandi)




D.D. n. 172017

Oggetto:
Approvazione
Progetti

Bando di Ricerca
2017

Fondazione Cassa di
Risparmio di Perugia
I dircttore del DI

DA |
SUG g r EEeTIEE

- . algumo

dell'ordine dal giorno N. ...

(I DIRETTORE DEL DIPARTIMENTO DI INGEGNERIA

VISTA la pubblicazione del Bando 2017 per la richiesta di [inanziamento per
progetti di ricerca emanato dalla Fondazione Cassa di Risparmio di Perugia:
VISTI i progetti pervenuti al Dipartimento di Ingegneria dell’Universita degli
Studi di Perugia:
- OPTO WIND - Mctodi innovativi per diagnosi precoce di guasti su macchine
coliche ¢ outimizzazione della vita a fatica dei componenti® - referente Prof,
Francesco Castellani:
- Studio dellutilizzo di combustibili non convenzionali per lo sviluppo di
propulsori a basso impatto ambientale” - referente Ing. Michele Battistoni:
CONSIDERATO che i progetti di ricerca  devono essere presentati alla
Fondazione Cassa di Risparmio di Perugia entro il termine del 10 Gennaio
2017:;
VISTA pertanto Furgenza di approvare i progetti di ricerca con i relativi
piani [inanziari con Deereto in quanto entro la data del 10 Gennaio 2017 non
sono previste sedute di Consiglio di Dipartimento:

DECRETA
di approvare i seguenti progetti di ricerca con i relativi piani finanziari:
OPTO WIND - Metodi innovativi per diagnosi precoce di guasti su macchine
eoliche ¢ ottimizzazione della vita a fatica dei componenti - referente Prof,
Francesco Castellani, per una richiesta di linanziamento pari ad € 72.651,22
di cui autofinanziamento per € 29.151.26:

- Studio dell”utilizzo di combustibili non convenzionali per lo sviluppo di
propulsori a basso impatto ambientale — referente Ing. Michele Battistoni per
und richiesta di finanziamento pari ad € 25.000.00 di cui autofinanziamento per
€ 10.000,00;

di impegnarsi a sostenere tutti gli eventuali oneri non previsti nei progetti.
[T presente decreto sard sottoposto a ratifica del prossimo Consiglio di
Dipartimento.

Perugia. 10012017 i

Il Diteftore .
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Decreto n.6

Master di II livello in “PRO Gettare SMART CITIES Architettura, Bulding
Simulation, Energia, Mobilita ICT” - art.3 del Regolamento Didattico:
rettifica

I DIRETTORE

la delibera di approvazione della II edizione del Master Universitario di II
livello in “PRO Gettare SMART CITIES Architettura, Bulding
Simulation, Energia, Mobilita ICT” del consiglio del Dipartimento di
Ingegneria del 13.12.2016;
il Regolamento didattico del Master Universitario di II livello in “PRO
Gettare SMART CITIES Architettura, Bulding Simulation, Energia,
Mobilita ICT” e il relativo Progetto di Corso;

che, per mero errore materiale, all’art.3 del Regolamento didattico del
Master Universitario di II livello in “PRO Gettare SMART CITIES
Architettura, Bulding Simulation, Energia, Mobilita ICT” ¢ stata indicata
la quota d’iscrizione pari a euro 3.000 anziché 3.500, come peraltro previsto
nel piano finanziario del Progetto di Corso;
la propria competenza;

DECRETA

di approvare la rettifica, all’art.3 del Regolamento didattico del Master Universitario di II
livello in “PRO Gettare SMART CITIES Architettura, Bulding Simulation, Energia,
Mobilita ICT?, relativa alla quota d’iscrizione pari a euro 3.500.

Il presente decreto sara portato a ratifica del prossimo consiglio di dipartimento.

. Giuseppe Saccomandi)

Direttore Tel: +3975 5853600 9

Segretario Amministrativo Tel: +3975 585 3653
Segreteria Amministrativa Tel: +3975 585 3657-3652-3949-3686-3688 FAX 3654
Segreteria Didattica Tel: +3975 585 3605-3603-3604
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